Khi một quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống

388

Với giải Bài 6 trang 12 Chuyên đề Toán 10 Cánh diều chi tiết trong Bài 1: Hệ phương trình bậc nhất ba ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 1: Hệ phương trình bậc nhất ba ẩn

Bài 6 trang 12 Chuyên đề Toán 10: Khi một quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức  trong đó độ cao h và độ cao ban đầu  được tính bằng mét, t là thời gian của chuyển động tính bằng giây, a là gia tốc của chuyển động tính bằng m/s2, v0 là vận tốc ban đầu được tính bằng m/s. Tìm a, v0, h0 biết sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m.

Lời giải:

t = 0,5 thì h = 6,075

 12a0,52+v0.0,5+h0=6,07518a+12v0+h0=6,075  1

t = 1 thì h = 8,5  

12a.12+v0.1+h0=8,512a+v0+h0=8,5  2

t = 2 thì h = 6  

12a.22+v0.2+h0=62a+2v0+h0=6  3

Từ (1), (2) và (3) ta có hệ phương trình: 18a+12v0+h0=6,07512a+v0+h0=8,52a+2v0+h0=6.

Giải hệ này ta được a = –9,8; v0 = 12,2; h0 = 1,2.

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá