Các vật liệu xây dựng đều có hệ số dãn nở. Vì thế, khi đặt dầm cầu,

692

Với giải Bài 3 trang 59 Chuyên đề Toán 10 Cánh diều chi tiết trong Bài 7: Parabol; giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 7: Parabol

Bài 3 trang 59 Chuyên đề Toán 10: Các vật liệu xây dựng đều có hệ số dãn nở. Vì thế, khi đặt dầm cầu, người ta thường đặt cố định một đầu dầm, đầu còn lại đặt trên một con lăn có thể di động được nhằm giải quyết sự dãn nở của vật liệu. Hình 21 minh hoạ một dầm cầu được đặt ở hai bờ kênh, giới hạn bởi hai cung parabol có cùng trục đối xúmg. Người ta thiết kế các thanh giằng nối hai cung parabol đó sao cho các thanh giằng theo phương thẳng đứng cách đều nhau và cách đều hai đầu dầm.

Các vật liệu xây dựng đều có hệ số dãn nở (ảnh 1)

Tính tổng độ dài của các thanh giằng theo phương thẳng đứng.

Lời giải:

Các vật liệu xây dựng đều có hệ số dãn nở (ảnh 1)

Ta chọn hai hệ trục toạ độ Oxy và O'xy' sao cho đỉnh của mỗi parabol trùng với O và O' (như hình vẽ, đơn vị trên các trục là mét).

Ta cần tính các đoạn OO', A1A2, B1B2, C1C2.

Dễ thấy OO' = AA' = BB' = CC' = 9.

– Xét trong hệ trục toạ độ Oxy:

Giả sử parabol (P) có phương trình: y2 = 2px (p > 0).

Khi đó D có toạ độ (21; 40) thuộc (P) nên 402 = 2p . 21

2p=160021.

Vậy phương trình của (P) là y2=160021x.

Các vật liệu xây dựng đều có hệ số dãn nở (ảnh 1)

– Xét trong hệ trục toạ độ O'xy':

Giả sử parabol (P') có phương trình: y'2 = 2px (p > 0).

Khi đó D có toạ độ (12; 40) thuộc (P') nên 402 = 2p . 12

2p=4003.

Vậy phương trình của (P') là y'2=4003x.

Các vật liệu xây dựng đều có hệ số dãn nở (ảnh 1)

– Tính các đoạn A1A2, B1B2, C1C2:

A1A2 = AA2 – AA1 = (AA' + A'A2) – AA1 = (9 + 0,75) – 1,3125 = 8,3475.

B1B2 = BB2 – BB1 = (BB' + B'B2) – BB1 = (9 + 3) – 5,25 = 6,75.

C1C2 = CC2 – CC1 = (CC' + C'C2) – CC1 = (9 + 6,75) – 11,8125 = 3,9375.

Tổng độ dài của các thanh giằng theo phương thẳng đứng là:

OO' + 2A1A2 + 2B1B2 + 2C1C2

= 9 + 2 . 8,3475 + 2 . 6,75 + 2 . 3,9375

= 47,07.

Vậy tổng độ dài của các thanh giằng theo phương thẳng đứng là 47,07 mét.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

 

 

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá