SBT Toán 7 Chân trời sáng tạo Bài 1: Số vô tỉ. Căn bậc hai số học

874

Toptailieu biên soạn và giới thiệu giải Sách bài tập Toán 7 Bài 1: Sô vô tỉ. Căn bậc hai số học sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 7 Bài 1.

Giải SBT Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Bài 1 trang 35 sách bài tập Toán 7: a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân.

74; 3310; 1243; 1225.

b) Trong các số thập phân trên hãy chỉ ra các số thập phân vô hạn tuần hoàn.

Lời giải:

a) +) Đặt tính, ta được:

Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân -7/4; 33/10; -124/3; 12/5

Vậy 74=1,75.

+) Đặt tính, ta được:

Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân -7/4; 33/10; -124/3; 12/5

Vậy 3310=3,3.

+) Đặt tính, ta được:

Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân -7/4; 33/10; -124/3; 12/5

Vậy 1243= 9 – 41,333... = – 41,(3).

Đặt tính, ta được:

Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân -7/4; 33/10; -124/3; 12/5

Vậy 1225=0,48.

b) Trong các số thập phân trên, số thập phân vô hạn tuần hoàn là – 41, 333... .

Bài 2 trang 35 sách bài tập Toán 7: Hãy biểu diễn các số thập phân sau dưới dạng số hữu tỉ: 7,2; 0,25; 7,(2).

Lời giải:

Ta có:

7,2 = 7210;

0,25 = 25100;

7,(2) = 7 + 0,(2) = 7 + 2.0,(1) = 7 + 2.19 = 639+29=659.

Vậy biểu diễn các số thập phân 7,2; 0,25; 7,(2) dưới dạng số hữu tỉ lần lượt là 7210;25100;659.

Bài 3 trang 35 sách bài tập Toán 7: Chọn phát biểu đúng trong các phát biểu sau:  a) 3?;

b) 25?;

c) – ?∈?;

d) 10047.

Lời giải:

a) Ta có: 31,732050808... nên 3 được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra 3 là số vô tỉ hay 3 ?. Do đó a) đúng.

b) Ta có 52 = 25 (5 > 0) nên 25=5. Suy ra 5 là số hữu tỉ, mà số hữu tỉ không phải số cô tỉ nên 25 ?. Do đó b) sai.

c) Ta có: – π ≈ -3,141592654... nên – π được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra – π là số vô tỉ hay – π ∈?. Do đó c) đúng.

d) Ta có: 100471,458649915... nên 10047 được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra 10047 là số vô tỉ, mà số vô tỉ không là số hữu tỉ. Do đó d) sai.

Vậy phát biểu đúng là a và c.

Bài 4 trang 35 sách bài tập Toán 7: Tính: a) 81; b) 225; c) 6425;

d) 112;

e) 132.

Lời giải:

a) Ta có 92 = 81 (9 > 0) nên 81=9.

b) Ta có: 152 = 225 (15 > 0) nên 225=15.

c) Ta có: 852=85.85=6425 nên 6425=85.

d) Ta có 112 = (-11)2 (11 > 0) nên 112=11

e) Ta có 13 > 0 nên 132=13.

Bài 5 trang 35 sách bài tập Toán 7: Hãy thay dấu ? bằng các số thích hợp:

a

256

?

36

?

a

?

7

?

20

Lời giải:

Ta có:

162 = 256 (16 > 0) nên 256=16 . Do đó a = 16.

72 = 49 nên a = 49.

62 = 36 (6 > 0) nên 36=6 . Do đó a = 6.

202 = 400 nên a = 400.

Khi đó ta điền vào bảng, ta được:

a

256

49

36

400

a

16

7

6

20

Bài 6 trang 36 sách bài tập Toán 7: Dùng máy tính cầm tay để tính các căn bậc hai sau (làm tròn đến 3 chữ số thập phân). a) 133; b) 99;

c) 7 ;

d) 1000.

Lời giải:

Sử dụng máy tính cầm tay, giá trị các căn bậc hai là:

a) 13311,53256259...11,533.

b) 999,949874371...9,950

c) 72,645751311...2,646.

d) 100031,6227766...31,623.

Bài 7 trang 36 sách bài tập Toán 7: Bác Tám thuê thợ trồng hoa cho một cái sân hình vuông hết tất cả là 36 720 000 đồng. Cho biết chi phí cho 1 m2 (kể cả công thợ và vật liệu) là 255 000 đồng. Hãy tính chiều dài mỗi cạnh của cái sân.

Lời giải:

Diện tích của sân hình vuông là:

36 720 000 : 255 000 = 144 (m2).

Mà cái sân hình vuông nên diện tích của sân bằng bình phương độ dài cạnh nên độ dài cạnh của hình vuông là căn bậc hai số học của diện tích.

Vì vậy chiều dài mỗi cạnh của sân là: 144=12 (m).

Vậy chiều dài mỗi cạnh của sân là 12 m.

Bài 8 trang 36 sách bài tập Toán 7: Tính bán kính một hình tròn có diện tích là 42,52 m2.

Lời giải:

Gọi R là bán kính của hình tròn, khi đó ta có công thức: S = π.R2

Mà diện tích hình tròn là 42,52 m2 nên R2 = 42,52 : π = 42,52π

⇔ R = 42,52π3,68.

Vậy bán kính của hình tròn khoảng 3,68 m.

Bài 9 trang 36 sách bài tập Toán 7: Tìm số hữu tỉ trong các số sau: 5,3; 19; 2,(11); 0,456; 1,21.

Lời giải:

Ta có:

5,3 = 5310 (trong đó 53; 10 ∈ ℤ và 10 ≠ 0) nên 5,3 là một số hữu tỉ.

132=1913>0 nên , (trong đó 1; 3 ∈ ℤ và 3 ≠ 0) nên 19 là một số hữu tỉ.

999,949874371... là số thập phân vô hạn không tuần hoàn nên 99 là một số vô tỉ.

2,(11) ≈ 2,111111... là số thập phân vô hạn tuần hoàn với chu kì 11 nên 2,(11) là một số hữu tỉ.

0,456 là số thập phân hữu hạn nên là một số hữu tỉ.

Ta có 1,12 = 1,21 (1,1 > 0) nên 1,21=1,1, mà 1,1 là số thập phân hữu hạn nên là một số hữu tỉ.

Vậy số hữu tỉ trong các số trên là: 5,3; 19; 2,(11); 0,456; 1,21.

Bài 10 trang 36 sách bài tập Toán 7: Tìm số vô tỉ trong các số sau: 5;254;14449.

Lời giải:

Ta có: 52,236067977... là số thập phân vô hạn không tuần hoàn nên 5 là số vô tỉ.

Ta có: 522=52.52=25452>0 nên 254=52 ⇒ 254=52. Mà 52 là số hữu tỉ. Do đó 254 là số hữu tỉ.

Ta có: 1272=127.127=14449127>0 nên 14449=127 . Mà 127 là số hữu tỉ. Do đó 14449 là số hữu tỉ.

Bài 11 trang 36 sách bài tập Toán 7: Người ta chứng minh được rằng: - Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn.

- Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân vô hạn tuần hoàn.

Hãy tìm số thập phân vô hạn tuần hoàn trong các số hữu tỉ sau: 720;256.

Lời giải:

Xét phân số 720 , ta có mẫu số của phân số là 20 = 22.5 có ước nguyên tố là 2 và 5 nên phân số này được viết dưới dạng số thập phân hữu hạn.

Xét phân ?số 256 , ta có mẫu số của phân số là 6 = 2.3 có ước nguyên tố là 2 và 3 nên phân số này được viết dưới dạng số thập phân vô hạn tuần hoàn.

Vậy số thập phân vô hạn tuần hoàn là 256 .

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương I

Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Bài 3: Làm tròn số và ước lượng kết quả

Bài tập cuối chương 2

Bài 1: Hình hộp chữ nhật. Hình lập phương

Đánh giá

0

0 đánh giá