Với Giải SBT Toán 7 Bài 5 trang 60 trong Bài 7: Tính chất ba đường trung tuyến của một tam giác Sách bài tập Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7.
Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Vẽ AH
Bài 5 trang 60 sách bài tập Toán 7: Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Vẽ AH vuông góc với BC tại H. Cho biết HB = HM. Chứng minh:
a) ∆ABH = ∆AMH;
b) .
Lời giải:
a) Xét ∆ABH và ∆AMH có:
,
Cạnh AH là cạnh chung,
HB = HM (giả thiết).
Do đó ΔABH = ΔAMH (c.g.c).
Vậy ΔABH = ΔAMH.
b) Vì ∆ABC có hai đường trung tuyến AM và BN cắt nhau tại G nên G là trọng tâm tam giác ABC.
Suy ra .
Mặt khác ΔABH = ΔAMH (câu a) nên ta có AB = AM (hai cạnh tương ứng).
Suy ra .
Vậy .
Xem thêm lời giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 3 trang 60 sách bài tập Toán 7: Cho tam giác ABC có hai trung tuyến AM và CN cắt nhau tại G...
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 6: Tính chất ba đường trung trực của một tam giác
Bài 8: Tính chất ba đường cao của một tam giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.