Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc

477

Với giải Câu hỏi 9.13 trang 67 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc

Bài 9.13 trang 67 Sách bài tập Toán lớp 10 Tập 2: Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc.

a) Xác suất để An không đứng cuối hàng là

A. 23;

B. 13;

C. 35;

D. 25.

b) Xác suất để Bình và Cường đứng cạnh nhau là

A. 14;

B. 23;

C. 25;

D. 12.

c) Xác suất để An đứng giữa Bình và Cường là

A. 23;

B. 13;

C. 35;

D. 25.

d) Xác suất để Bình đứng trước An là

A. 14;

B. 23;

C. 25;

D. 12.

Lời giải:

Đáp án đúng là: (a) A; (b) B; (c) B; (d) D

Gọi A, B, C lần lượt là vị trí của An, Bình, Cường.

Không gian mẫu có số phần tử là: n(Ω) = 3! = 6.

a)

Biến cố E: “An không đứng cuối hàng”. Ta có:

E = {(A, B, C); (A, C, B); (B, A, C); (C, A, B)}, n(E) = 4.

Vậy P(E) = nEnΩ=46=23.

b)

Biến cố F: “Bình và Cường đứng cạnh nhau”. Ta có:

F = {(A, B, C); (A, C, B); (B, C, A); (C, B, A)}, n(F) = 4.

Vậy P(F) = nFnΩ=46=23.

c)

Biến cố G: “An đứng giữa Bình và Cường”. Ta có:

G = {(B, A, C); (C, A, B)}, n(G) = 2.

Vậy P(G) = nGnΩ=26=13.

d)

Biến cố H: “Bình đứng trước An”. Ta có:

H = {(B, A, C); (C, B, A); (B, C, A)}, n(H) = 3.

Vậy P(H) = nHnΩ=36=12.

Đánh giá

0

0 đánh giá