Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó

477

Với giải Câu hỏi 9.26 trang 69 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó

Bài 9.26 trang 69 Sách bài tập Toán lớp 10 Tập 2: Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài. Tính xác suất để hai thầy trò ngồi cạnh nhau.

Lời giải:

Số cách xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài là: 6! = 720, do đó, n(Ω) = 720.

Gọi biến cố E: “Hai thầy trò ngồi cạnh nhau”.

Trên chiếc ghế dài, giả sử ta đếm số từ 1 đến 6 tương ứng mỗi số là mỗi vị trí của một đại biểu.

Công đoạn 1: Xếp hai thầy trò ngồi cạnh nhau, có 10 cách xếp:

(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5)

Công đoạn 2: Xếp 4 đại biểu còn lại vào 4 chiếc ghế còn lại có: 4! = 24 (cách)

Do đó, theo quy tắc nhân, ta có: 10 . 24 = 240 cách xếp hai thầy trò ngồi cạnh nhau, do đó, n(E) = 240.

Vậy P(E) = nEnΩ=240720=13.

Đánh giá

0

0 đánh giá