Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện

384

Với giải Câu hỏi 9.24 trang 69 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện

Bài 9.24 trang 69 Sách bài tập Toán lớp 10 Tập 2: Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.

Lời giải:

Số kết quả khi gieo ba con xúc xắc cân đối và đồng chất là: 6 . 6 . 6 = 216.

Do đó, n(Ω) = 216.

Gọi A là biến cố: “Tổng số chấm xuất hiện trên ba con xúc xắc bằng 7”.

A = {(a, b, c): a + b + c = 7} với a, b, c lần lượt là số chấm xuất hiện trên ba con xúc xắc.

Ta có:

(a, b, c) = (1, 1, 5), khi hoán vị ta có 3 cách {(1, 1, 5); (1, 5, 1); (5, 1, 1)}

(a, b, c) = (1, 2, 4), khi hoán vị ta có 6 cách {(1, 2, 4}; (1, 4, 2); (2, 1, 4); (4, 1, 2}; (4, 2, 1); (2, 4, 1)}

(a, b, c) = (1, 3, 3), khi hoán vị ta có 3 cách {(1, 3, 3); (3, 1, 3); (3, 3, 1)}

(a, b, c) = (2, 2, 3), khi hoán vị ta có 3 cách {(3, 2, 2); (2, 3, 2); (2, 2, 3)}

Do đó, n(A) = 3 + 6 + 3 + 3 = 15.

Vậy P(A) = nAnΩ=15216=572.

Đánh giá

0

0 đánh giá