Với giải Câu hỏi trang 69 Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
SBT Toán 10 Kết nối tri thức trang 69: Bài tập cuối chương 9
Lời giải:
Số kết quả khi gieo ba con xúc xắc cân đối và đồng chất là: 6 . 6 . 6 = 216.
Do đó, n(Ω) = 216.
Gọi A là biến cố: “Tổng số chấm xuất hiện trên ba con xúc xắc bằng 7”.
A = {(a, b, c): a + b + c = 7} với a, b, c lần lượt là số chấm xuất hiện trên ba con xúc xắc.
Ta có:
(a, b, c) = (1, 1, 5), khi hoán vị ta có 3 cách {(1, 1, 5); (1, 5, 1); (5, 1, 1)}
(a, b, c) = (1, 2, 4), khi hoán vị ta có 6 cách {(1, 2, 4}; (1, 4, 2); (2, 1, 4); (4, 1, 2}; (4, 2, 1); (2, 4, 1)}
(a, b, c) = (1, 3, 3), khi hoán vị ta có 3 cách {(1, 3, 3); (3, 1, 3); (3, 3, 1)}
(a, b, c) = (2, 2, 3), khi hoán vị ta có 3 cách {(3, 2, 2); (2, 3, 2); (2, 2, 3)}
Do đó, n(A) = 3 + 6 + 3 + 3 = 15.
Vậy P(A) = .
Lời giải:
Kí hiệu A là kem xoài, B là kem sô cô la, C là kem sữa
Ta có không gian mẫu:
Ω = {AAA; BBB; CCC; ABC; ABB; ACC; BCC; BAA; CAA; CBB}
Do đó, n(Ω) = 10.
Gọi E là biến cố: “Ba cốc kem chọn thuộc hai loại”. Ta có:
E ={ABB; ACC; BCC; BAA; CAA; CBB}
n(E) = 6
Vậy P(E) = .
Bài 9.26 trang 69 Sách bài tập Toán lớp 10 Tập 2: Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài. Tính xác suất để hai thầy trò ngồi cạnh nhau.
Lời giải:
Số cách xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài là: 6! = 720, do đó, n(Ω) = 720.
Gọi biến cố E: “Hai thầy trò ngồi cạnh nhau”.
Trên chiếc ghế dài, giả sử ta đếm số từ 1 đến 6 tương ứng mỗi số là mỗi vị trí của một đại biểu.
Công đoạn 1: Xếp hai thầy trò ngồi cạnh nhau, có 10 cách xếp:
(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5)
Công đoạn 2: Xếp 4 đại biểu còn lại vào 4 chiếc ghế còn lại có: 4! = 24 (cách)
Do đó, theo quy tắc nhân, ta có: 10 . 24 = 240 cách xếp hai thầy trò ngồi cạnh nhau, do đó, n(E) = 240.
Vậy P(E) = .
a) Không gian mẫu có bao nhiêu phần tử.
Hai cách xếp chỗ ngồi quanh bàn tròn được coi là như nhau nếu đối với mỗi người A trong nhóm, trong hai cách xếp đó, người ngồi bên trái A và bên phải A không thay đổi.
b) Tính xác suất để hai vợ chồng ông bà An ngồi cạnh nhau.
Lời giải:
a)
Mỗi cách xếp chỗ ngồi quanh bàn tròn là một phần tử của không gian mẫu. Giả sử 6 chiếc ghế quanh bàn tròn được đánh số là 1, 2,…..6 và xi kí hiệu là người ngồi ở ghế mang số i. Khi đó, mỗi cách xếp 6 người này (x1, x2, x3, x4, x5, x6) cho ta một hoán vị của tập hợp 6 người. Có tất cả 6! cách xếp chỗ ngồi cho họ.
Vì ngồi xung quanh 1 chiếc bàn tròn nên 6 cách xếp sau đây được xem là giống nhau. Mặc dù số ghế họ ngồi có thay đổi nhưng vị trí tương đối giữa 6 người đó là không thay đổi.
(x1, x2, x3, x4, x5, x6); (x2, x3, x4, x5, x6, x1); (x3, x4, x5, x6, x1, x2);
(x4, x5, x6, x1, x2, x3); (x5, x6, x1, x2, x3, x4); (x6, x1, x2, x3, x4, x5)
Vậy chỉ có 6! : 6 = 120 cách xếp. Do đó, n(Ω) = 120.
b)
Gọi E là biến cố: “Hai ông bà An ngồi cạnh nhau”.
Ta coi hai ông bà An ngồi chung 1 ghế. Như vậy có 5! : 5 = 4! = 24 cách xếp. Vì hai ông bà An có thể đổi chỗ cho nhau nên có 24.2! = 48 cách xếp để hai ông bà An ngồi cạnh nhau, do đó, n(E) = 48.
Vậy P(E) = .
Lời giải:
Số cách chọn ngẫu nhiên 6 quả cầu trong số 6 + 4 + 2 = 12 quả cầu là: = 924 cách, do đó, n(Ω) = 924.
Gọi E là biến cố: “Chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen”.
Chọn 3 quả cầu trắng từ 6 quả cầu trắng có = 20 cách;
Chọn 2 quả cầu đỏ từ 4 quả cầu đỏ có = 6 cách;
Chọn 1 quả cầu đen từ 2 quả cầu đen có 2 cách.
Do đó, theo quy tắc nhân, n(E) = 20 . 6 . 2 = 240.
Vậy P(E) = .
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 9.15 trang 67 Sách bài tập Toán lớp 10 Tập 2: Gieo hai con xúc xắc cân đối...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.