Toán 10 Cánh Diều trang 11 Bài 2: Hoán vị, chỉnh hợp

386

Với giải Câu hỏi trang 11 Toán 10 Tập 2 Cánh Diều trong Bài 2: Hoán vị, chỉnh hợp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Cánh Diều trang 11 Bài 2: Hoán vị, chỉnh hợp

Câu hỏi khởi động trang 11 Toán lớp 10 Tập 2: Trong vòng đấu loại trực tiếp của giải bóng đá, nếu sau khi kết thúc 90 phút thi đấu và hai hiệp phụ mà kết quả vẫn hòa thì loạt đá luân lưu 11 m sẽ được thực hiện. Trước hết, mỗi đội cử ra 5 cầu thủ thực hiện loạt đá luân lưu.

 (ảnh 1)

Trong toán học, mỗi cách sắp xếp thứ tự đá luân lưu của 5 cầu thủ được gọi là gì?

Lời giải:

Sau bài học này, ta sẽ biết được mỗi cách sắp xếp thứ tự đá luân lưu của 5 cầu thủ được gọi là một hoán vị của 5 cầu thủ đó.

Hoạt động 1 trang 11 Toán lớp 10 Tập 2: Huấn luyện viên chọn 5 cầu thủ An, Bình, Cường, Dũng, Hải đá luân lưu 11 m. Nêu ba cách xếp thứ tự đá luân lưu của 5 cầu thủ trên.

Lời giải:

Ta có thể xếp thứ tự đá luân lưu của 5 cầu thủ như sau:

Cách 1: An → Bình → Cường → Dũng → Hải.

Cách 2: Bình → Cường → An → Dũng → Hải.

Cách 3: Hải → Dũng → Bình → Cường → An.

Hoạt động 2 trang 11 Toán lớp 10 Tập 2: Một lớp được chia thành 3 nhóm A, B, C để tham gia hoạt động thực hành trải nghiệm. Sau khi các nhóm thực hiện xong hoạt động, giáo viên sắp xếp thứ tự trình bày của 3 nhóm.

a) Có bao nhiêu cách chọn nhóm trình bày thứ nhất?

b) Sau khi đã chọn nhóm trình bày thứ nhất, có bao nhiêu cách chọn nhóm trình bày thứ hai?

c) Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có bao nhiêu cách chọn nhóm trình bày thứ ba?

d) Với mỗi cách chọn 3 nhóm như trên, giáo viên tạo ra một hoán vị của 3 phần tử. Tính số các hoán vị được tạo ra.

Lời giải:

a) Vì có tất cả là 3 nhóm khác nhau trong lớp, nên có 3 cách chọn nhóm trình bày thứ nhất (chọn A, hoặc B, hoặc C).

b) Sau khi đã chọn nhóm trình bày thứ nhất, thì còn lại 2 nhóm chưa trình bày, do đó có 2 cách chọn nhóm trình bày thứ hai.

c) Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, thì lớp còn lại 1 nhóm chưa trình bày, vậy có 1 cách chọn nhóm trình bày thứ ba.

c) Việc chọn thứ tự nhóm trình bày là ta thực hiện ba hành động liên tiếp: chọn nhóm trình bày thứ nhất, chọn nhóm trình bày thứ hai và chọn nhóm trình bày thứ ba.

Theo quy tắc nhân, số cách chọn thứ tự nhóm trình bày hay chính là số các hoán vị của 3 phần tử là: 3 . 2 . 1 = 6.

Vậy số các hoán vị được tạo ra là 6.

Luyện tập 1 trang 11 Toán lớp 10 Tập 2: Có bao nhiêu số gồm sáu chữ số đôi một khác nhau được tạo thành từ các chữ số 1, 2, 3, 4, 5, 6?

Lời giải:

Mỗi cách tạo ra một số gồm sáu chữ số đôi một khác nhau từ các chữ số 1, 2, 3, 4, 5, 6 là một hoán vị của 6 phần tử.

Vậy số số gồm sáu chữ số thỏa mãn yêu cầu bài toán được tạo thành là:

P= 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 (số).

Đánh giá

0

0 đánh giá