SBT Toán 10 Cánh Diều trang 48 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

322

Với giải Câu hỏi trang 48 SBT Toán 10 Tập 1 Cánh Diều trong Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Cánh Diều trang 48 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 16 trang 48 SBT Toán 10Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau

Lời giải:

a) y = 4x2 + 6x – 5;

b) y = – 3x2 + 10x – 4.

Lời giải

a) Hàm số y = 4x2 + 6x – 5, có a = 4 > 0 và ∆ = 62 – 4.4.(– 5) =  116

-4a=-1164.4=-294

Ta có -b2a=-62.4=-34 và -4a=-1164.4=-294

Khi đó, ta có bảng biến thiên:

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau: (ảnh 1)

Vậy hàm số nghịch biến trên -;-34 , hàm số đồng biến trên -34;+ .

b) Hàm số y = – 3x2 + 10x – 4, có a = – 3 < 0 và ∆ = 102 – 4.(– 3).(– 4) = 52

Ta có-b2a=-102.-3=53  và -4a=-524-3=133

Khi đó, ta có bảng biến thiên:

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau: (ảnh 2)

Vậy hàm số đồng biến trên -;53 , hàm số nghịch biến trên 53;+.

Bài 17 trang 48 SBT Toán 10Xác định hàm số bậc hai biết hệ số tự do c = 2 và bảng biến thiên tương ứng trong mỗi trường hợp sau:

Xác định hàm số bậc hai biết hệ số tự do c = 2 và bảng biến thiên tương ứng (ảnh 1)

Xác định hàm số bậc hai biết hệ số tự do c = 2 và bảng biến thiên tương ứng (ảnh 2)

Lời giải:

a) Dựa vào bảng biến thiên ta có:

-b2a=-1 ⇔ b = 2a

-4a=-2 ⇔ ∆ = 8a ⇔ b2 – 4ac = 8a

⇔ (2a)2 – 4a.2 = 8a

⇔ 4a2 – 8a = 8a

⇔ 4a2 – 16a = 0

⇔ 4a(a – 4) = 0

⇔ a = 0 (không thỏa mãn) hoặc a = 4 (thỏa mãn)

⇒ b = 2a = 2.4 = 8.

Vậy hàm số bậc hai cần tìm là y = 4x2 + 8x + 2.

b) Dựa vào bảng biến thiên ta có:

-b2a=2 ⇔ b = – 4a

-4a=8 ⇔ ∆ = – 32a ⇔ b2 – 4ac = – 32a

⇔ (4a)2 – 4a.2 = – 32a  

⇔ 4a2 – 8a = – 32a

⇔ 16a2 + 24a = 0

⇔ 8a(2a + 3) = 0

⇔ a = 0 (không thỏa mãn) hoặc a = 32 (thỏa mãn)

⇒ b = – 4a = – 4.(-32) = 6.

Vậy hàm số bậc hai cần tìm là y = -32x2 + 6x + 2.

Bài 18 trang 48 SBT Toán 10Xác định hàm số bậc hai biết đồ thị tương ứng trong mỗi Hình 12a, 12b:

Xác định hàm số bậc hai biết đồ thị tương ứng trong mỗi Hình 12a, 12b

Lời giải:

+) Hình 12a):

Dựa vào hình vẽ, ta thấy:

- Đồ thị hàm số cắt trục tung tại điểm có tung độ – 3 nên c = – 3.

- Điểm đỉnh của parabol có tọa độ (1; – 4) nên ta có:

-b2a=1 ⇔ b = – 2a

-4a=-4 ⇔ ∆ = 16a

⇔ b2 – 4ac = 16a

⇔ (– 2a)2 – 4a(– 3) = 16a

⇔ 4a2 + 12a = 16a

⇔ 4a2 – 4a = 0

⇔ 4a(a – 1) = 0

⇔ a = 0 (không thỏa mãn) hoặc a = 1 (thỏa mãn)

⇒ b = – 2a = – 2.1 = – 2.

Vậy hàm số bậc hai cần tìm là y = x2 – 2x – 3.

+) Hình 12b):

Dựa vào hình vẽ, ta thấy:

- Đồ thị hàm số cắt trục tung tại điểm có tung độ 0 nên c = 0.

- Điểm đỉnh của parabol có tọa độ (– 1; 2) nên ta có:

-b2a=-1 ⇔ b = 2a

-4a=2 ⇔ ∆ = – 8a

⇔ b2 – 4ac = – 8a

⇔ (2a)2 – 4a.0 = – 8a

⇔ 4a2 = – 8a

⇔ 4a2 + 8a = 0

⇔ 4a(a + 2) = 0

⇔ a = 0 (không thỏa mãn) hoặc a = – 2 (thỏa mãn)

⇒ b = 2a = 2.(– 2) = – 4.

Vậy hàm số bậc hai cần tìm là y = – 2x2 – 4x.

Bài 19 trang 48 SBT Toán 10Trong một công trình, người ta xây dựng một cổng ra vào hình parabol (minh họa ở Hình 13) sao cho khoảng cách giữa hai chân cổng BC là 9 m. Từ một điểm M trên thân cổng người ta đo được khoảng cách tới mặt đất là MK = 1,6 m và khoảng cách từ K tới chân cổng gần nhất là BK = 0,5 m. Tính chiều cao của cổng theo đơn vị mét (làm tròn kết quả đến hàng phần mười)

 Trong một công trình, người ta xây dựng một cổng ra vào hình parabol (minh họa ở Hình 13)(ảnh 1)

Lời giải:

Đặt hệ trục tọa độ như hình vẽ:

 Trong một công trình, người ta xây dựng một cổng ra vào hình parabol (minh họa ở Hình 13)(ảnh 2)

Tọa độ các điểm lần lượt là: B(– 4,5; 0); C(4,5; 0);

Vì BK = 0,5 m nên OK = 4,5 – 0,5 = 4 m. Do đó M(4; 1,6).

Cổng có hình parabol nên gọi phương trình hàm số là y = ax2 + bx + c (a ≠ 0) (1).

Điểm B thuộc parabol nên thay tọa độ điểm B vào (1) ta được:

0 = a(– 4,5)2 + b(– 4,5) + c ⇔ 20,25a – 4,5b + c = 0 (2).

Điểm C thuộc parabol nên thay tọa độ điểm C vào (1) ta được:

0 = a(4,5)2 + b(4,5) + c ⇔ 20,25a + 4,5b + c = 0 (3).

Điểm M thuộc parabol nên thay tọa độ điểm M vào (1) ta được:

1,6 = a.42 + b.4 + c ⇔ 16a + 4b + c = 1,6 (4).

Từ (2), (3) và (4) ta có hệ phương trình: 20,25a - 4,5b + c = 020,25a + 4,5b + c = 016a + 4b + c =1,6a = -3285b = 0c = 64885.

Suy ra parabol cần tìm là: y = -3285x2 + 64885.

Điểm N là điểm đỉnh của parabol thuộc vào trục tung Oy nên hoành độ điểm N bằng 0.

Thay x = 0 vào hàm số y = -3285x2 + 64885, ta được y = -3285.02 + 64885=64885

⇒ N0;64885.

Tung độ điểm N cũng chính là chiều cao của cổng và bằng 64885  7,6 m.

Vậy chiều cao của cổng khoảng 7,6 m.

Đánh giá

0

0 đánh giá