Giải Toán 8 trang 79 Tập 1 (Chân trời sáng tạo)

296

Với giải SGK Toán 8 Chân trời sáng tạo trang 79 chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 trang 79 Tập 1 (Chân trời sáng tạo)

Vận dụng 5 trang 79 Toán 8 Tập 1: Một hoa văn trang trí được ghép bởi ba hình tứ giác có độ dài mỗi cạnh đều bằng 2 cm (Hình 18). Gọi tên các tứ giác này và tính chu vi của hoa văn.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 29)

Lời giải:

Tứ giác có độ dài mỗi cạnh đều bằng 2 cm nên tứ giác này là hình thoi.

Chu vi của một hình thoi là: 4.2 = 8 (cm).

Chu vi của hoa văn là: 3.8 = 24 (cm).

Vận dụng 6 trang 79 Toán 8 Tập 1: Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 30)

Lời giải:

Tứ giác ABCD có hai đường chéo vuông góc tại trung điểm của mỗi đường nên là hình thoi.

Độ dài cạnh của hình thoi ABCD là: 52 : 4 = 13 (cm).

Giả sử đường chéo AC = 24 cm và O là giao điểm hai đường chéo.

Ta có O là trung điểm của AC nên OA = 12AC = 12 cm.

Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:

AB2 = OA2 + OB2

Suy ra OB=AB2OA2=132122=5 (cm).

Do O là trung điểm của BD nên BD = 2OB = 2.5 = 10 (cm).

Vậy hình thoi có độ dài cạnh là 13 cm và độ dài đường chéo còn lại là 10 cm.

Đánh giá

0

0 đánh giá