Với giải Bài 6 trang 81 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Bài 6 trang 81 Toán 8 Tập 1 | Chân trời sáng tạo Giải Toán lớp 8
Bài 6 trang 81 Toán 8 Tập 1: Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.
Lời giải:
Ta có AE = EB nên AB = 2AE.
DG = GC nên DC = 2DG.
Mà AE = DG nên AB = DC.
Chứng minh tương tự ta cũng có: AD = BC.
Tứ giác ABCD có AB = DC và AD = BC nên là hình bình hành (dấu hiệu nhận biết).
Suy ra AB // CD và AD // BC.
Lại có AD ⊥ AB nên AD ⊥ CD; AB ⊥ BC; BC ⊥ CD.
Xét DAEH và DBEF có:
; AE = BE; AH = BF.
Do đó DAEH = DBEF (hai cạnh góc vuông).
Suy ra HE = FE (hai cạnh tương ứng).
Chứng minh tương tự ta cũng có: HE = HG; HE = FG.
Do đó HE = EF = FG = GH.
Tứ giác EFGH có HE = EF = FG = GH nên là hình thoi.
Xem thêm các bài giải SGK Toán 8 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 2 trang 76 Toán 8 Tập 1: Trong các tứ giác ở Hình 9, tứ giác nào không là hình bình hành?
Khám phá 5 trang 77 Toán 8 Tập 1: a) Hình thoi có là hình bình hành không?
Thực hành 3 trang 78 Toán 8 Tập 1: Cho hình thoi MNPQ có I là giao điểm của hai đường chéo.
Bài 6 trang 81 Toán 8 Tập 1: Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.
Bài 9 trang 81 Toán 8 Tập 1: Tìm các hình bình hành và hình thang có trong Hình 22.
Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hình thang – Hình thang cân
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.