Bài 1 trang 80 Toán 8 Tập 1 | Chân trời sáng tạo Giải Toán lớp 8

456

Với giải Bài 1 trang 80 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Bài 1 trang 80 Toán 8 Tập 1 | Chân trời sáng tạo Giải Toán lớp 8

Bài 1 trang 80 Toán 8 Tập 1: Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 31)

Lời giải:

• Hình 19a):

Ta có A^1=C^1 và hai góc này ở vị trí so le trong nên AB // CD.

Để tứ giác ABCD là hình bình hành thì có hai trường hợp sau:

+) Trường hợp 1: Tứ giác ABCD có hai cặp cạnh đối song song. Do đó cần thêm điều kiện AD // BC.

+) Trường hợp 2: Tứ giác ABCD có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện AB = CD.

• Hình 19b): Tứ giác EFGH đã có một cặp cạnh đối bằng nhau (EH = GF).

Để tứ giác EFGH là hình bình hành thì có hai trường hợp sau:

+) Trường hợp 1: Tứ giác EFGH có hai cặp cạnh đối bằng nhau. Do đó cần thêm điều kiện EF = GH.

+) Trường hợp 2: Tứ giác EFGH có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện EH // GF.

• Hình 19c):

Ta có OQ = ON nên O là trung điểm của NQ.

Để tứ giác MNPQ là hình bình hành thì tứ giác MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường. Do đó cần thêm điều kiện O là trung điểm của MP.

• Hình 19d): Tứ giác STUV đã có một cặp góc đối bằng nhau S^=U^.

Để tứ giác STUV là hình bình hành thì tứ giác STUV có cac cặp góc đối bằng nhau. Do đó cần thêm điều kiện T^=V^.

Đánh giá

0

0 đánh giá