Giải Toán 11 trang 46 Tập 1 (Cánh Diều)

174

Với giải SGK Toán 11 Cánh Diều trang 46 chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 46 Tập 1 (Cánh Diều)

Hoạt động 3 trang 45 Toán 11 Tập 1: Xét mỗi dãy số sau:

● Dãy số: 1; 4; 9; 16; 25; 36; 49; 64; 81; 100 (1)

● Cho số 2=1,414213562... . Dãy số (un) được xác định bởi: Với mỗi số tự nhiên n ≥ 1, un là số thập phân hữu hạn có phần số nguyên là 1 và phần thập phân là n chữ số thập phân đầu tiên đứng sau dấu “,” của số 2 . Cụ thể là: u1 = 1,4; u2 = 1,41; u3 = 1,414; u4 = 1,4142; u5 = 1,41421; ... (2)

● Dãy số (un) với (un) = (– 2)n (3)

● Dãy số (un) được xác định bởi: u1 = 1 và un = un-1 + 2 với mọi n ≥ 2 (4)

a) Hãy nêu cách xác định mỗi số hạng của lần lượt các dãy số (1), (2), (3), (4).

b) Từ đó hãy cho biết dãy số có thể cho bằng những cách nào.

Lời giải:

a) Cách xác định mỗi số hạng của các dãy số đã cho là:

- Dãy số (1) được xác định bằng cách liệt kê.

- Dãy số (2) được xác định bằng cách diễn đạt bằng lời cách xác định mỗi số hạng của dãy số đó.

- Dãy số (3) được xác định bằng cách cho công thức của số hạng tổng quát của dãy số đó.

- Dãy số (4) được xác định bằng cách cho bằng phương pháp quy hồi.

b) Từ ý a) ta có thể thấy dãy số có thể cho bằng 4 phương pháp: liệt kê, diễn đạt bằng lời các xác định mỗi số hạng của dãy số đó, cho công thức của số hạng tổng quát của dãy số đó, cho bằng phương pháp quy hồi.

Luyện tập 3 trang 46 Toán 11 Tập 1: Cho dãy số (un) với un=n33n+1 . Tìm u33, u333 và viết dãy số dưới dạng khai triển.

Lời giải:

Ta có: u3=333.3+1=0 ;

u333=33333.333+1=0,33.

Dãy số dưới dạng khai triển là:

u1=12;u2=17;u3=0,u4=113;...;un=n33.n+1;...

III. Dãy số tăng, dãy số giảm

Hoạt động 4 trang 46 Toán 11 Tập 1: Cho dãy số (un) với un = n2. Tính un+1. Từ đó, hãy so sánh un+1 và un với mọi n  *.

Lời giải:

Ta có: un+1 = (n + 1)2 = n2 + 2n + 1.

Xét hiệu: un+1 – un = n2 + 2n + 1 – n2 = 2n + 1 > 0 với mọi n  ℕ*.

Vậy un+1 > un.

Luyện tập 4 trang 46 Toán 11 Tập 1: Chứng minh rằng dãy số (vn) với vn = 13n là một dãy số giảm.

Lời giải:

Ta có: un+1=13n+1

Xét hiệu un+1un=13n+113n=23.13n<0

Suy ra un+1 < un.

Vậy dãy số giảm.

Đánh giá

0

0 đánh giá