Với giải Bài 4 trang 48 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 4 trang 48 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11
Bài 4 trang 48 Toán 11 Tập 1: Trong các dãy số (un) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n2 + 2;
b) un = – 2n + 1;
c) .
Lời giải:
a) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra n2 + 2 ≥ 3
Do đó un ≥ 3
Vậy dãy số (un) bị chặn dưới bởi 3.
b) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1
Do đó un ≤ – 1.
Vậy dãy số (un) bị chặn trên bởi – 1.
c) Ta có:
Vì n ∈ ℕ* nên n ≥ 1 suy ra > 0
Ta lại có: 1 và suy ra
Do đó 0<
Vậy dãy số (un) bị chặn.
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
Luyện tập 2 trang 44 Toán 11 Tập 1: Cho dãy số (un) = n2. a) Viết năm số hạng đầu và số hạng tổng quát của dãy số (un).
Luyện tập 4 trang 46 Toán 11 Tập 1: Chứng minh rằng dãy số (vn) với vn = là một dãy số giảm.
Luyện tập 5 trang 47 Toán 11 Tập 1: Chứng minh rằng dãy số (un) với là bị chặn.
Bài 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số (un), biết:
a) ;
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.