Với giải SGK Toán 11 Kết nối tri thức trang 100 chi tiết trong Bài 14: Phép chiếu song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 100 Tập 1 (Kết nối tri thức)
Bài 4.29 trang 100 Toán 11 Tập 1: Những mệnh đề nào trong các mệnh đề sau đây là đúng?
a) Phép chiếu song song biến đoạn thẳng thành đoạn thẳng.
b) Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng cắt nhau.
c) Phép chiếu song song biến tam giác đều thành tam giác cân.
d) Phép chiếu song song biến hình vuông thành hình bình hành.
Lời giải:
a) Mệnh đề a) là mệnh đề đúng.
b) Mệnh đề b) là mệnh đề sai vì phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
c) Mệnh đề c) là mệnh đề sai vì phép chiếu song song biến tam giác đều thành một tam giác bất kì.
d) Mệnh đề d) là mệnh đề đúng.
Lời giải:
Nếu tam giác A'B'C' là hình chiếu của tam giác ABC qua một phép chiếu song song thì tam giác ABC cũng là hình chiếu của tam giác A'B'C' qua một phép chiếu song song.
Giả sử tam giác A'B'C' là hình chiếu của tam giác ABC trên mặt phẳng (P) theo phương chiếu d. Khi đó AA', BB', CC' đôi một song song với nhau và đều song song với phương chiếu d. Do vậy, tam giác ABC là hình chiếu của tam giác A'B'C' trên mặt phẳng (ABC) theo phương d.
Lời giải:
Gọi G là trọng tâm của tam giác ABC và G' là hình chiếu song song của nó. Gọi M là trung điểm của BC thì A, G, M thẳng hàng theo thứ tự đó. Gọi M' là hình chiếu của M. Khi đó, theo tính chất của phép chiếu song song ta có:
A', G', M' thẳng hàng theo thứ tự đó và (1).
B', M', C' thẳng hàng theo thứ tự đó và (2).
Từ (1) và (2) suy ra G' là trọng tâm của tam giác A'B'C'.
Lời giải:
+) Xét hình lục giác đều MNPQRS có tâm O.
Ta nhận thấy:
- Tứ giác OSMN là hình thoi;
- Các điểm P, Q, R lần lượt là các điểm đối xứng của các điểm S, M, N qua tâm O.
Từ đó suy ra các vẽ hình biểu diễn của hình lục giác đều MNPQRS như sau:
- Vẽ hình bình hành O'S'M'N' biểu diễn cho hình thoi OSMN;
- Lấy các điểm P', Q', R' lần lượt là các điểm đối xứng của các điểm S', M', N' qua O', ta được hình biểu diễn M'N'P'Q'R'S' của hình lục giác đều MNPQRS.
+) Gọi I là giao điểm các đường chéo AD, BE và CF trong hình lục giác ABCDEF ở Hình 4.65.
Khi đó nếu ABCDEF là hình biểu diễn của hình lục giác đều thì phải thỏa mãn hai điều kiện:
- Tứ giác IFAB là hình bình hành (1);
- D, E, F lần lượt là các điểm đối xứng của các điểm A, B, C qua I (2).
Từ hình vẽ ta thấy điều kiện (2) thỏa mãn nhưng điều kiện (1) không thỏa mãn. Vậy Hình 4.65 không thể là hình biểu diễn của một hình lục giác đều.
Lời giải:
Vì AB = 2 cm, CD = 6 cm nên CD = 3AB.
Hình chóp S.ABCD có các mặt bên là hình tam giác nên hình biểu diễn của nó cũng có các mặt bên là hình tam giác, đáy ABCD là hình thang có hai đáy AB, CD (do AB // CD) và CD = 3AB nên hình biểu diễn của ABCD là một hình thang có độ dài một đáy gấp ba lần độ dài của đáy còn lại. Từ đó, ta vẽ được hình biểu diễn của hình chóp S.ABCD như sau:
Hãy giải thích tại sao AB song song với CD.
Lời giải:
AB và CD là bóng của hai thanh chắn của một chiếc thang dưới ánh mặt trời. Khi đó AB và CD là hình chiếu song song của hai thanh chắn của một chiếc thang lên tường (do mặt trời chiếu xuống tường các tia sáng song song). Mà hai thanh chắn của một chiếc thang thì song song với nhau, do đó theo tính chất của phép chiếu song song ta suy ra AB song song với CD.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
HĐ2 trang 97 Toán 11 Tập 1: Quan sát Hình 4.56a và trả lời các câu hỏi sau:
HĐ3 trang 98 Toán 11 Tập 1: Trong ba hình dưới đây, hình nào thể hiện hình lập phương chính xác hơn?
Bài 4.29 trang 100 Toán 11 Tập 1: Những mệnh đề nào trong các mệnh đề sau đây là đúng?
Xem thêm các bài giải sách giáo khoa Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 12: Đường thẳng và mặt phẳng song song
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.