Với giải Thực hành 3 trang 111 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Thực hành 3 trang 111 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11
Thực hành 3 trang 111 Toán 11 Tập 1: Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:
a) MN song song với hai mặt phẳng (SBC) và (SAD);
b) SB và SC song song với mặt phẳng (MNE).
Lời giải:
a) Trong mặt phẳng (ABCD) có MN là đường trung bình của hình bình hành ABCD nên MN // BC// AD.
Ta có: MN // BC mà BC ⊂ (SBC) nên MN // (SBC).
Ta lại có: MN // AD mà AD ⊂ (SAD) nên MN // (SAD).
b)
Trong mặt phẳng (ABCD) gọi O là giao điểm của AC và BD, khi đó O là trung điểm của AC.
+) Xét tam giác SAC có E là trung điểm của SA, O là trung điểm của AC nên EO là đường trung bình của tam giác. Do đó EO // SC.
Mặt khác EO ⊂ (MNE) nên SC // (MNE).
+) Xét tam giác SAB có E là trung điểm của SA, M là trung điểm của AB nên EM là đường trung bình của tam giác. Do đó EM // SB.
Mặt khác EM ⊂ (MNE) nên SB // (MNE).
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khởi động trang 107 Toán 11 Tập 1: Đường thẳng a trên mép hiên của tòa nhà có điểm nào chung với mặt (P) của phố đi bộ Nguyễn Huệ không?
Hoạt động khám phá 1 trang 107 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABMN không đồng phẳng. Tìm số giao điểm của mặt phẳng (ABCD) lần lượt với các đường thẳng MN, MA và AC.
Thực hành 1 trang 108 Toán 11 Tập 1: Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).
Hoạt động khám phá 2 trang 108 Toán 11 Tập 1: Cho đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nằm trong (P). Đặt (Q) = mp(a, b).
Thực hành 2 trang 109 Toán 11 Tập 1: Cho hình chóp S.ABC có A’, B’, C’ lần lượt là trung điểm của SA, SB, SC. Tìm các đường thẳng lần lượt nằm trong, cắt, song song với mặt phẳng (ABC).
Vận dụng 1 trang 109 Toán 11 Tập 1: Hãy chỉ ra trong Hình 9 các đường thẳng lần lượt nằm trong, song song, cắt mặt phẳng sàn nhà.
Hoạt động khám phá 3 trang 109 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P), mặt phẳng (Q) chứa a và cắt (P) theo giao tuyết b (Hình 10). Trong (Q), hai đường thẳng a, b có bao nhiêu điểm chung?
Hoạt động khám phá 4 trang 110 Toán 11 Tập 1: Cho hai đường thẳng chéo nhau a, b. Lấy một điểm M trên a, vẽ đường thẳng b’ đi qua M và song song với b. Đặt (P) là mặt phẳng đi qua a, b’.
Thực hành 3 trang 111 Toán 11 Tập 1: Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:
Vận dụng 2 trang 111 Toán 11 Tập 1: Làm thế nào để đặt cây thước kẻ a để nó song song với các trang của một cuốn sách?
Bài 1 trang 111 Toán 11 Tập 1: Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC.
Bài 2 trang 112 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF.
Bài 3 trang 112 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.
Bài 4 trang 112 Toán 11 Tập 1: Cho tứ diện ABCD và điểm M thuộc cạnh AB. Gọi (α) là mặt phẳng qua M, song song với hai đường thẳng BC và AD. Gọi N, P, Q lần lượt là giao điểm của mặt phẳng (α) với các cạnh AC, CD và DB.
Bài 5 trang 112 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là trung điểm của CD, (P) là mặt phẳng qua M song song với SA và BC. Tìm giao tuyến của (P) với các mặt của hình chóp S.ABCD.
Bài 6 trang 112 Toán 11 Tập 1: Mô tả vị trí tương đối của các đường thẳng a, b, c, d, e với mặt phẳng (P) là mặt trước của tòa nhà (Hình 19).
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác: