Với giải SGK Toán 11 Chân trời sáng tạo trang 112 chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 112 Tập 1 (Chân trời sáng tạo)
a) Chứng minh đường thẳng OO’ song song với các mặt phẳng (CDEF), (ADF) và (BCE).
b) Gọi M và N lần lượt là trung điểm của AF và BE. Chứng minh MN // (CDFE).
c) Tìm giao tuyến của hai mặt phẳng (OMN) và (ABCD).
Lời giải:
a) Vì O là tâm hình bình hành ABCD nên O là trung điểm AC và BD, O’ là tâm của hình bình hành ABEF nên O’ là trung điểm AE và BF.
+) Ta có: OO’ // FD (tính chất đường trung bình trong tam giác BDF), mà FD ⊂ (CDEF). Do đó OO’ // (CDEF).
+) Ta lại có: FD ⊂ (ADF) nên OO’ // (ADF).
+) Ta có: OO’ // EC (tính chất đường trung bình trong tam giác ACE), mà EC ⊂ (BCE). Do đó OO’ // (BCE).
b) Vì M và N lần lượt là trung điểm của AF và BE nên MN là đường trung bình của ABEF, suy ra MN // EF mà EF ⊂ (CDEF). Do đó MN // (CDEF).
c) Ta có MN // AB mà AB ⊂ (ABCD) và MN ⊂ (OMN)
Ta lại có: O ∈ (OMN) ∩ (ABCD)
Do đó giao tuyến của (OMN) và (ABCD) là đường thẳng đi d qua O và song song với AB.
a) MNPQ là hình gì?
b) Gọi I = MQ ∩ NP. Chứng minh rằng I luôn luôn thuộc một đường thẳng cố định khi M di động trên AD.
Lời giải:
a) Trong mặt phẳng (ABCD), từ M kẻ đường thẳng song song CD cắt BC tại N.
Gọi K là giao điểm của MN và AC.
Trong mặt phẳng (SAC), từ K kẻ đường thẳng song song với SA cắt SC tại P.
Trong mặt phẳng (SCD), từ P kẻ đường thẳng song song với CD cắt SD ở Q.
Mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.
b) Gọi d là giao tuyến của (SAD) ∩ (SBC)
Ta có:
Mà S ∈ (SAD) ∩ (SBC) nên S ∈ d
Ta lại có:
Do đó I ∈ d
Vì vậy I thuộc đường thẳng d cố định đi qua S và song song với AD.
a) Chứng minh MNPQ là hình bình hành.
b) Trong trường hợp nào thì MNPQ là hình thoi?
Lời giải:
a) Trong mặt phẳng (ABC) từ điểm M kẻ đường thẳng song song với BC cắt AC tại N.
Trong mặt phẳng (ACD) từ điểm N kẻ đường thẳng song song với AD cắt cạnh CD tại P.
Trong mặt phẳng (BCD) từ điểm P kẻ đường thẳng song song với BC cắt cạnh BD tại Q.
Nối M với Q lại ta được mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.
Xét tứ giác MNPQ, có:
MN // QP (cùng // BC)
MQ // NP (cùng //AD)
Do đó tứ giác MNPQ là hình bình hành (theo dấu hiệu nhận biết).
b) Để tứ giác MNPQ là hình thoi thì MN = NP, điều này xảy ra trong trường hợp M là trung điểm của AB và AD = BC.
Lời giải:
+) Giao tuyến của (P) và (ABCD):
Từ điểm M kẻ đường thẳng song song với BC cắt AB tại N
Suy ra giao tuyến của (P) và (ABCD) là MN.
+) Giao tuyến của (P) và (SAB):
Từ điểm N kẻ đường thẳng song song với SA cắt SB tại P
Suy ra giao tuyến của (P) và (SAB) là NP.
+) Giao tuyến của (P) và (SBC):
Từ điểm P kẻ đường thẳng song song với BC cắt SC tại Q
Suy ra giao tuyến của (P) và (SBC) là PQ.
+) Giao tuyến của (P) và (SDC) là MQ.
+) Giao tuyến của (P) và (SAD):
Kéo dài MN cắt AD tại K, từ K kẻ đường thẳng d song song với SA.
Suy ra giao tuyến (P) và (SAD) là d.
Lời giải:
Đường thẳng a và e nằm trong mặt phẳng (P).
Đường thẳng d cắt mặt phẳng (P) tại một điểm.
Đường thẳng b và đường thẳng c song song với mặt phẳng (P).
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.