Với giải Bài 2.23 trang 50 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài tập cuối chuyên đề 2 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ
Bài 2.23 trang 50 Chuyên đề Toán 11: Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Lời giải:
Giả sử G là một đồ thị đầy đủ có n đỉnh và có ít nhất 1 000 cạnh (n ∈ ℕ, n ≥ 2).
Vì G là đồ thị đầy đủ nên mỗi cặp đỉnh của G đều được nối với nhau bằng một cạnh, do đó mỗi đỉnh của G đều có bậc là (n – 1).
Tổng tất cả các bậc của các đỉnh của G là n(n – 1).
Suy ra G có số cạnh là .
Vì G có ít nhất 1 000 cạnh nên ta có
⇔ n(n – 1) – 2 000 ≥ 0
⇔ n2 – n – 2 000 ≥ 0 (*)
Giải bất phương trình (*), ta được (không thỏa mãn) hoặc (thỏa mãn).
Do n là số tự nhiên nên n nhỏ nhất thỏa mãn là 46.
Vậy số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh là 46 đỉnh.
Xem thêm các bài giải Chuyên đề Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 2.19 trang 50 Chuyên đề Toán 11: Viết tập hợp các đỉnh và tập hợp các cạnh của mỗi đồ thị sau:
Bài 2.20 trang 50 Chuyên đề Toán 11: Vẽ đồ thị G = (V, E) với các đỉnh và các cạnh như sau:
Bài 2.26 trang 51 Chuyên đề Toán 11: Tìm một chu trình Euler trong đồ thị trên Hình 2.40.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.