Có thể nào đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần

156

Với giải Bài 2.8 trang 44 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài 9: Đường đi Euler và đường đi Hamilton giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Có thể nào đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần

Bài 2.8 trang 44 Chuyên đề Toán 11: Có thể nào đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần?

Chuyên đề Toán 11 (Kết nối tri thức) Bài 9: Đường đi Euler và đường đi Hamilton (ảnh 12)

Lời giải:

Chuyên đề Toán 11 (Kết nối tri thức) Bài 9: Đường đi Euler và đường đi Hamilton (ảnh 13)

Bằng cách loaị bỏ tất cả các chi tiết ngoại trừ các vùng đất và các cây cầu, sau đó thay thế mỗi vùng đất bằng một điểm và thay thế mỗi câu cầu nối hai vùng đất bằng một đoạn nối hai điểm, ta nhận được một đồ thị G có 6 đỉnh (tương ứng 6 vùng đất) và có 15 cạnh (tương ứng 15 cây cầu) như hình vẽ trên.

Ta thấy đồ thị G liên thông và đỉnh A có bậc 4, đỉnh B có bậc 3, đỉnh C có bậc 5, đỉnh D có bậc 8, đỉnh E có bậc 4, đỉnh F có bậc 6 hay mọi đỉnh của G đều có bậc chẵn, chỉ trừ B và C có bậc lẻ, do đó theo Định lí 2, ta suy ra đồ thị G có một đường đi Euler từ A đến B. Chẳng hạn, một đường đi Euler của đồ thị G là BAFCDADFDEFECDBC.

Vậy có thể đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần.

Đánh giá

0

0 đánh giá