Lý thuyết Cấp số nhân (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

419

Toptailieu.vn xin giới thiệu Lý thuyết Cấp số nhân (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Cấp số nhân (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 3: Cấp số nhân

A. Lý thuyết Cấp số nhân

1. Cấp số nhân

Cấp số nhân là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q, nghĩa là:

un=un1.q,nN

 

Số q được gọi là công bội của cấp số nhân.

* Chú ý: Dãy (un) là cấp số nhân thì uk2=uk1.uk+1(k2).

2. Số hạng tổng quát của cấp số nhân

Nếu một cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát uncủa nó được xác định bởi công thức

un=u1.qn1,n2

3. Tổng của n số hạng đầu của một cấp số nhân

Cho cấp số nhân (un)với công bội q1. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=u1(1qn)1q

Lý thuyết Cấp số nhân – Toán 11 Chân trời sáng tạo (ảnh 1)
 

B. Bài tập Cấp số nhân

Bài 1. Cho cấp số nhân (un) có u2 = 2 và u5 = 16. Tìm q và u1 của cấp số nhân đã cho.

Hướng dẫn giải

Ta có:

• u2 = u1.q ⇔ 2 = u1.q

• u5 = u1.q⇔ 16 = u1.q4

Khi đó u5u2=u1.q4u1.q=q3 ⇔ q3 = 8 ⇔ q = 2.

Do đó u1 = 1.

Vậy q = 2 và u1 = 1.

Bài 2. Cho cấp số nhân (un) có u1 = 3 và q=12. Tính tổng 8 số hạng đầu tiên của cấp số nhân đã cho.

A. 765256;

B. 765128;

C. 265756;

D. 128265.

Hướng dẫn giải

Đáp án đúng là: B

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Cấp số nhân

Bài 3. Dãy số (un) có un = 4.3n có phải là cấp số nhân không? Nếu phải hãy xác định công bội?

A. q = 3;

B. q = 2;

C. q = 4;

D. q = 1.

Hướng dẫn giải

Đáp án đúng là: A

Ta có: un+1un=4.3n+14.3n=3 không phụ thuộc vào n.

Vậy dãy số (un) là một cấp số nhân với công bội q = 3.

Xem thêm Lý thuyết các bài  Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 2: Cấp số cộng

Lý thuyết Bài 1: Giới hạn của dãy số

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 3: Hàm số liên tục

Lý thuyết Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá