Toptailieu.vn xin giới thiệu Lý thuyết Hàm số liên tục (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Lý thuyết Hàm số liên tục (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11
Bài giải Bài 3: Hàm số liên tục
A. Lý thuyết Hàm số liên tục
1. Hàm số liên tục tại 1 điểm
Cho hàm xác định trên khoảng K, . Hàm số được gọi là liên tục tại điểm nếu .
Hàm số không liên tục tại được gọi là gián đoạn tại điểm đó.
*Nhận xét: Để hàm số liên tục tại thì phải có cả 3 điều sau:
2. Hàm số liên tục trên một khoảng, trên một đoạn
- Hàm số xác định trên khoảng
Hàm số được gọi là liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số được gọi là liên tục trên đoạn nếu nó liên tục trên khoảng và .
* Nhận xét:
- Đồ thị hàm số liên tục trên một khoảng, đoạn là “đường liền” trên khoảng, đoạn đó.
- Nếu hàm số liên tục trên đoạn và thì phương trình có ít nhất một nghiệm trên khoảng .
3. Tính liên tục của hàm sơ cấp cơ bản
- Hàm số đa thức và hàm số liên tục trên .
- Các hàm số và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
4. Tổng, hiệu, tích, thương của hàm số liên tục
Giả sử hai hàm số và liên tục tại điểm . Khi đó:
a, Các hàm số và liên tục tại điểm .
b, Hàm số liên tục tại điểm nếu .
B. Bài tập Hàm số liên tục
Bài 1. Chứng minh rằng phương trình 3x3 + x2 – x – 1 có nghiệm trong khoảng (−1; 1).
Hướng dẫn giải
Hàm số f(x) = 3x3 + x2 – x – 1 là một hàm số đa thức, nên f (x) liên tục trên ℝ.
Suy ra, f (x) cũng liên tục trên đoạn [−1; 1].
Ta có:
• f(–1) = 3 . (–1)3 + (–1)2 – (–1) – 1 = –3 + 1 + 1 – 1 = –2;
• f(1) = 3 . 13 + 12 – 1 – 1 = 3 + 1 – 1 – 1 = 2.
Suy ra f(–1) . f(1) = (–2) . 2 = – 4 < 0.
Do vậy, có ít nhất một nghiệm c (−1; 1) sao cho f (c) = 0.
Vậy phương trình 3x3 + x2 – x – 1 có nghiệm trong khoảng (−1; 1).
Bài 2. Xét tính liên tục của hàm số sau đây tại điểm x = 3.
Hướng dẫn giải
Ta có:
• f(x) = 3 = 3
Do f(x) f(x) (3 5) nên hàm số gián đoạn tại điểm x = 3.
Bài 3. Tìm giá trị m để hàm số sau đây liên tục trên tập xác định:
Hướng dẫn giải
Tập xác định của hàm số là D = ℝ.
Xét trường hợp x ≠ 1, hàm số có dạng f(x) = , là hàm số phân thức trên tập xác định (–∞; 1) ∪ (1; +∞) nên nó liên tục trên các khoảng (–∞; 1) và (1; +∞).
Xét trường hợp x = 1, ta có:
• f(1) = 2m. 1+1= 2m +1
Khi đó, để hàm f (x) liên tục tại điểm x0 = 1 thì:
f(x) = f(1)2m+1= -1m = - 1
Vậy m = −1 là giá trị của tham số m cần tìm.
Xem thêm Lý thuyết các bài Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Giới hạn của hàm số
Lý thuyết Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Lý thuyết Bài 2: Hai đường thẳng song song
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.