Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 3: Hàm số liên tục Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 3.
SBT Toán 11 (Chân trời sáng tạo) Bài 3: Hàm số liên tục
Bài 1 trang 90 SBT Toán 11 Tập 1: Dùng định nghĩa, xét tính liên tục của hàm số:
a) f(x) = x3 ‒ 3x + 2 tại điểm x = ‒2;
b) tại điểm x = 0.
Lời giải:
a) Tập xác định của hàm số là D = ℝ, chứa điểm ‒2.
Ta có:
⦁ f(‒2) = (‒2)3 ‒ 3.(‒2) + 2 = 0;
⦁ - 3.(-2) + 2 = 0.
Suy ra .
Vậy hàm số liên tục tại điểm x = ‒2.
b) Tập xác định của hàm số là chứa điểm 0.
Ta có:
⦁
⦁
Suy ra
Vậy hàm số liên tục tại điểm x = 0.
Bài 2 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của mỗi hàm số sau tại điểm x = 2.
a)
b)
Lời giải:
a) Tập xác định của hàm số là ℝ, chứa điểm 2.
Ta có:
⦁
⦁
⦁ f(2) = 6 ‒ 2.2 = 2.
Suy ra
Vậy hàm số liên tục tại điểm x = 2.
b) Tập xác định của hàm số là D = ℝ, chứa điểm 2.
Ta có:
⦁
⦁ f(2) = 0
Suy ra
Vậy hàm số không liên tục tại điểm x = 2.
Bài 3 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của hàm số:
a) tại điểm x = ‒1;
b) tại điểm x = 1.
Lời giải:
a) Tập xác định của hàm số là ℝ, chứa điểm ‒1.
Ta có:
⦁ >
⦁
⦁
Suy ra
Vậy hàm số liên tục tại x = ‒1.
b) Tập xác định của hàm số là D = ℝ, có chứa điểm 1.
Ta có:
⦁ .
⦁
Suy ra
Vậy hàm số không liên tục tại điểm x = ‒1.
Bài 4 trang 90 SBT Toán 11 Tập 1: Cho hàm số
Lời giải:
Ta có:
Hàm số liên tục tại x = 2 khi và chỉ khi .
Vậy là giá trị cần tìm.
Bài 5 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:
a) f(x) = x3 ‒ x2 + 2;
b)
c)
d) .
Lời giải:
a) f(x) là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.
b) Ta có: x2 ‒ 4x ≠ 0 ⇔ x ≠ 0 và x ≠ 4.
f(x) là hàm số phân thức có tập xác định D = ℝ ∖ {0; 4} nên nó liên tục trên các khoảng (‒∞; 0), (0; 4) và (4; +∞).
c) Ta có:
f(x) là hàm số phân thức có tập xác định ℝ nên nó liên tục trên ℝ.
d) Ta có: x2 ‒ 2x ≥ 0 ⇔ x ≤ 0 và x ≥2
f(x) là hàm số phân thức có tập xác định D = (‒∞; 0] ∪ [2; +∞) nên nó liên tục trên các khoảng (‒∞; 0] và [2; +∞).
Bài 6 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:
a)
b) .
Lời giải:
a) Điều kiện: 1 ‒ x2 > 0 ⇔ ‒1 < x < 1.
Hàm số xác định và liên tục trên (‒1; 1).
Hàm số y = tanx xác định và liên tục trên các khoảng (với k ∈ ℤ)
Do nên hàm số y = tanx xác định và liên tục trên (‒1; 1).
Suy ra, hàm số liên tục trên (‒1; 1).
b) Điều kiện: sinx ≠ 0 ⇔ x ≠ kπ (k ∈ ℤ)
Do đó hàm số liên tục trên các khoảng với k ∈ ℤ.
Bài 7 trang 90 SBT Toán 11 Tập 1: Cho hai hàm số f(x) = x ‒ 1 và g(x) = x2 ‒ 3x + 2. Xét tính liên tục của các hàm số:
a) y = f(x).g(x);
b)
c)
Lời giải:
a) Ta có y = f(x).g(x) = (x ‒ 1)(x2 ‒ 3x + 2)
Hàm số trên là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.
b) Ta có
Ta có: x2 ‒ 3x + 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.
Hàm số trên là hàm số phân thức có tập xác định D = ℝ ∖ {1; 2} nên nó liên tục trên các khoảng (‒∞; 1), (1; 2) và (2; +∞).
c) Ta có
Ta có: (x – 1)2> 0 ⇔ x ≠ 1
Hàm số trên là hàm phân thức có tập xác định D = ℝ \ {1} nên nó liên tục trên các khoảng (‒∞; 1) và (1; +∞).
Bài 8 trang 91 SBT Toán 11 Tập 1: Cho hai hàm số và
Tìm giá trị của tham số a sao cho hàm số h(x) = f(x) + g(x) liên tục tại x = 1.
Lời giải:
Ta có:
⦁
⦁
⦁
Hàm số h(x) liên tục tại x = 1 khi và chỉ khi .
Vậy a = 1.
Bài 9 trang 91 SBT Toán 11 Tập 1: Cho hàm số
Tìm giá trị của các tham số a và b sao cho hàm số y = f(x) liên tục trên ℝ.
Lời giải:
Ta có:
Suy ra:
⦁
⦁
⦁
⦁
Hàm số liên tục tại x = ‒2 và x = 2 khi và chỉ khi
Vậy a = 2, b = ‒8 là các giá trị cần tìm.
Bài 10 trang 91 SBT Toán 11 Tập 1: Chứng minh rằng phương trình:
a) x3 + 2x ‒ 1 = 0 có nghiệm thuộc khoảng (‒1; 1).
b) có nghiệm thuộc khoảng (0; 1).
Lời giải:
a) Xét hàm số f(x) = x3 + 2x ‒ 1 xác định trên khoảng (‒1; 1) và có:
⦁ f(‒1) = (‒1)3 + 2.(‒1) ‒ 1 = ‒4.
⦁ f(1) = 13 + 2.1 ‒ 1 = 2.
Do f(‒1).f(1) < 0 nên phương trình f(x) = 0 có nghiệm thuộc (‒1; 1).
b) Xét hàm số xác định trên khoảng (0; 1) và có:
⦁ .
⦁ .
Do f(0).f(1) < 0nên phương trình f(x) = 0 hay có nghiệm thuộc (0; 1).
Bài 11 trang 91 SBT Toán 11 Tập 1: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + (y ‒ 1)2 = 1. Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng d: y = m với đường tròn (C). Viết công thức xác định hàm số y = Q(m). Hàm số này không liên tục tại các điểm nào?
Lời giải:
Ta có
nên
Do đó hàm số y = Q(m) không liên tục tại m = 0.
Tương tự ta cũng có hàm số y = Q(m) không liên tục tại m = 2.
Vậy hàm số không liên tục tại các điểm m = 0 và m = 2.
Bài 12 trang 91 SBT Toán 11 Tập 1: Cho nửa đường tròn đường kính AB = 2. Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc .
Kí hiệu diện tích tam giác ABC là S(α) (phụ thuộc vào α). Xét tính liên tục của hàm số S(α)trên khoảng và tính các giới hạn
Lời giải:
Do tam giác ABC vuông tại C nên với ta có:
⦁ AC = AB.cosα = 2cosα;
⦁ BC = AB.sinα = 2sinα;
⦁ .
Do hàm số y = sin2α đều liên tục trên ℝ, mà nên hàm số y = S(α) liên tục trên khoảng .
Khi đó:
+)
+)
Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 3 trang 91
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.