Lý thuyết Cấp số nhân (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

446

Toptailieu.vn xin giới thiệu Lý thuyết Cấp số nhân (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Cấp số nhân (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 7: Cấp số nhân

A. Lý thuyết Cấp số nhân

1. Định nghĩa

Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q.

Số q được gọi là công bội của cấp số nhân.

Cấp số nhân (un)với công bội q được cho bởi hệ thức truy hồi

un=un1.q,nN

* Chú ý: Dãy (un) là cấp số nhân thì uk2=uk1.uk+1(k2).

2. Số hạng tổng quát

Nếu một cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát uncủa nó được xác định bởi công thức

un=u1.qn1,n2

3. Tổng của n số hạng đầu của một cấp số nhân

Cho cấp số nhân (un)với công bội q1. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=u1(1qn)1q

Lý thuyết Cấp số nhân – Toán 11 Kết nối tri thức (ảnh 1)
 

B. Bài tập Cấp số nhân

Bài 1: Một cấp số nhân có số hạng thứ 6 bằng 10 240 và số hạng thứ 3 bằng 160. Tìm số hạng thứ 50 của cấp số nhân này.

Hướng dẫn giải

Giả sử u1 là số hạng đầu và q là công bội của cấp số nhân đó. Ta có:

u6 = u. q5 = 10 240 (1)

u= u1 . q= 160 (2)

Lấy (1) chia vế theo vế (2) ta được: q3 = 64. Suy ra q = 4.

Với q = 4, ta tính được u­1 = 10.

Suy ra công thức số hạng tổng quát của cấp số nhân là: un = 10 . 4n–1

Vậy số hạng thứ 50 của cấp số nhân này là u50 = 10 . 450–1 = 10 . 449.

Bài 2: Viết năm số hạng đầu của dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng un = u1 . qn–1.

a) un = 4n;

b) un = 3n;

c) u= 2, un = nun–1.

Hướng dẫn giải

a) Năm số hạng đầu của dãy là: 4, 8, 12, 16, 20

Ta có: 8 : 4 = 2 ≠ 12 : 8 = 32 nên (un) không phải là cấp số nhân.

b) Năm số hạng đầu của dãy là: 3; 9; 27; 81; 243

Ta có: unun1=3n3n1=3 với mọi n ≥ 2

Suy ra dãy số là cấp số nhân với u1 = 3 và công bội q = 3.

Số hạng tổng quát: u= 3 . 3n–1.

c) Năm số hạng đầu của dãy là: 2; 4; 12; 48; 240

Ta có: 4 : 2 = 2 ≠ 12 : 4 = 3 nên (un) không phải là cấp số nhân.

Bài 3: Một cấp số nhân có số hạng đầu bằng 4 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 131 068?

Hướng dẫn giải

Số hạng tổng quát của cấp số nhân là: un = 4 . 2n–1.

Gọi n là số các số hạng cần lấy tổng, ta có

131 068 = SLý thuyết Toán 11 Kết nối tri thức Bài 7: Cấp số nhân = 4 . 2n – 4

Suy ra: 2n = 32768 = 215, do đó n = 15.

Vậy ta phải lấy 15 số hạng đầu của cấp số nhân.

Bài 4: Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:

a) 1, 3, 9, ...;

b) 3, 13,127, ….

Hướng dẫn giải

a) Ta thấy: 3 : 1 = 3, 9 : 3 = 3

Suy ra công bội q = 3

Số hạng tổng quát của cấp số nhân là: un = 3n–1.

Số hạng thứ 5: u5 = 35–1 = 81.

Số hạng thứ 100: u100 = 3100–1 = 399.

b) Ta thấy:Lý thuyết Toán 11 Kết nối tri thức Bài 7: Cấp số nhân

Suy ra cấp số nhân có công bội q = -19.

Số hạng tổng quát của cấp số nhân là: un = 3.Lý thuyết Toán 11 Kết nối tri thức Bài 7: Cấp số nhân.

Số hạng thứ 5: u5 = 3.Lý thuyết Toán 11 Kết nối tri thức Bài 7: Cấp số nhân12187.

Số hạng thứ 100: u100 =3.Lý thuyết Toán 11 Kết nối tri thức Bài 7: Cấp số nhân

Xem thêm Lý thuyết các bài  Toán 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 6: Cấp số cộng

Lý thuyết Bài 8: Mẫu số liệu ghép nhóm

Lý thuyết Bài 9: Các số đặc trưng đo xu thế trung tâm

Lý thuyết Bài 10: Đường thẳng và mặt phẳng trong không gian

Lý thuyết Bài 11: Hai đường thẳng song song

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá