Toptailieu.vn xin giới thiệu Lý thuyết Cấp số cộng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Lý thuyết Cấp số cộng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11
Bài giải Bài 6: Cấp số cộng
A. Lý thuyết Cấp số cộng
1. Định nghĩa
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Số d được gọi là công sai của cấp số cộng.
Cấp số cộng với công sai d được cho bởi hệ thức truy hồi
* Nhận xét: Nếu là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:
2. Số hạng tổng quát
Nếu cấp số cộng có số hạng đầu là và công sai d thì số hạng tổng quát của nó được xác định theo công thức
3. Tổng n số hạng đầu của một cấp số cộng
Cho cấp số cộng với công sai d. Đặt . Khi đó
B. Bài tập Cấp số cộng
Bài 1: Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:
a) 3, 8, 13, 18, ...;
b) 1, –2, –5, –8, ...
Hướng dẫn giải
a) Ta thấy: 8 – 3 = 5; 13 – 8 = 5
Suy ra cấp số cộng có u1 = 3, công sai d = 5
Số hạng tổng quát của dãy số là: un = 3 + 5(n – 1) = 3 + 5n – 5 = 5n – 2.
Số hạng thứ 5: u5 = 3 + 5 . (5 – 1) = 23
Số hạng thứ 100: u100 = 3 + 5 . (100 – 1) = 498.
b) Ta thấy: –2 – 1= –3; –5 – (–2) = –3
Suy ra cấp số cộng có u1 = 1, công sai d = –3
Số hạng tổng quát của dãy số là: un = 1 – 3(n − 1) = 1 – 3n + 3 = 4 – 3n.
Số hạng thứ 5: u5 = 1 − 3. (5 – 1) = −11
Số hạng thứ 100: u100 = 1 – 3. (100 – 1) = −296.
Bài 2: Một cấp số cộng có số hạng đầu bằng 1 và công sai bằng 4. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 561?
Hướng dẫn giải
Gọi n là số các số hạng đầu cần lấy tổng, ta có:
561 = Sn =[2.1+(n-1).4] = (-2+4n) = –n + 2n2
Do đó 2n2 – n – 561 = 0.
Giải phương trình bậc hai này ta được n = –16,5 (loại) hoặc n = 17.
Vậy ta phải lấy 17 số hạng đầu của cấp số cộng đã cho để có tổng bằng 561.
Bài 3: Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.
a) un = 3 + 4n;
b) un = 6n − 4;
c) u1 = 3, un = un–1 + n.
Hướng dẫn giải
a) u1 = 7; u2 = 11; u3 = 15; u4 = 19; u5 = 23
Ta có: un − un–1 = 3 + 4n − [3 + 4(n − 1)] = 4, với ∀n ≥ 2.
Suy ra dãy số là cấp số cộng có u1 = 7 và công sai d = 4
Số hạng tổng quát: un = 7 + 4(n − 1).
b) u1 = 2; u2 = 8; u3 = 14; u4 = 20; u5 = 26
Ta có: un − un–1 = 6n − 4 − [6(n − 1) − 4] = 6, với ∀ n ≥ 2.
Suy ra dãy số là cấp số cộng có u1 = 2 và công sai d = 6.
Số hạng tổng quát: un = 2 + 6(n − 1).
c) u1 = 3; u2 = 5; u3 = 8; u4 = 12; u5 =17
Ta có: u2 − u1 = 2 ≠ u3 – u2 = 3
Suy ra đây không phải cấp số cộng.
Bài 4: Một cấp số cộng có số hạng thứ 5 bằng 22 và số hạng thứ 12 bằng 43. Tìm số hạng thứ 50 của cấp số cộng này.
Hướng dẫn giải
Giả sử u1 là số hạng đầu và d là công sai của cấp số cộng đó. Ta có:
u5 = u1 + 4d = 22
u12 = u1 + 11d = 43
Giải hệ phương trình gồm hai phương trình trên ta được u1 = 10 và d = 3.
Vậy số hạng thứ 50 của cấp số cộng này là u50 = u1 + 49d = 10 + 49 . 3 = 157.
Bài 5: Vào năm 2020, dân số của một thành phố là khoảng 1,5 triệu người. Giả sử mỗi năm, dân số của thành phố này tăng thêm khoảng 15 nghìn người. Hãy ước tính dân số của thành phố vào năm 2030.
Hướng dẫn giải
Dân số mỗi năm của thành phố lập thành cấp số cộng có u1 = 1 500 (nghìn người), công sai d = 15.
Dân số mỗi năm có dạng tổng quát là: un = 1 500 + 15(n − 1).
Dân số của năm 2030 tức n = 11 thì u11 = 1 500 + 15 . (11 − 1) = 1 650 (nghìn người)
Vậy ước tính dân số của thành phố năm 2030 là 1650 nghìn người hay 1,65 triệu người.
Xem thêm Lý thuyết các bài Toán 11 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 8: Mẫu số liệu ghép nhóm
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.