Toptailieu.vn xin giới thiệu Lý thuyết Đơn thức (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Lý thuyết Đơn thức (Kết nối tri thức ) hay, chi tiết | Lý thuyết Toán 8
Bài giải Bài 1: Đơn thức
A. Lý thuyết Đơn thức
1. Đơn thức và đơn thức thu gọn
Đơn thức là biểu thức đại số chỉ gồm một số hoặc một biến, hoặc có dạng tích của những số và biến.
Số 0 được gọi là đơn thức không.
Ví dụ: 1; 2xy; -x2y(-4x);... là các đơn thức.
Đơn thức thu gọn là đơn thức chỉ gồm một số, hoặc có dạng tích của một số với những biến, mỗi biến chỉ xuất hiện một lần và đã được nâng lên lũy thừa với số mũ nguyên dương.
Ví dụ:
1; 2xy; 5x2y4z;... là các đơn thức thu gọn.
3x2yx; -x2y(-4x);... không phải là các đơn thức thu gọn.
Với các đơn chưa là đơn thức thu gọn, ta có thể thu gọn chúng bằng cách áp dụng các tính chất của phép nhân và phép nâng lên lũy thừa.
Ví dụ: -x2y(-4x) = (-).(-4).(x2.x).y = 3x3.y
Tổng số mũ của các biến trong một đơn thức thu gọn với hệ số khác 0 gọi là bậc của đơn thức đó.
Chú ý: + Số thực khác 0 là đơn thức bậc không.
+ Số 0 được gọi là đơn thức không có bậc.
Ví dụ: 2xy có bậc là 1 + 1 = 2
5x2y4z có bậc là 2 + 4+ 1 = 7
Với những đơn thức chưa thu gọn, ta nên thu gọn đơn thức trước, khi đó, bậc của đơn thức thu gọn chính là bậc của đơn thức ban đầu.
Ví dụ: -x2y(-4x) có đơn thức thu gọn là 3x3.y, đơn thức này có bậc là 3 + 1 = 4 nên đơn thức -x2y(-4x) có bậc là 4.
Trong một đơn thức thu gọn, phần số còn gọi là hệ số, phần còn lại gọi là phần biến.
Ví dụ: đơn thức 3x3.y có hệ số là 3, phần biến là x3.y.
2. Đơn thức đồng dạng
Hai đơn thức đồng dạng là hai đơn thức với hệ số khác 0 và có phần biến giống nhau.
- Cộng và trừ đơn thức đồng dạng: muốn cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
B. Bài tập Đơn thức
Đang cập nhật ...
Xem thêm các bài lý thuyết Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 3: Phép cộng và phép trừ đa thức
Bài 5: Phép chia đa thức cho đơn thức
Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.