Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Đại cương về phương trình (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:
Phương pháp giải Đại cương về phương trình (HAY NHẤT 2024)
A. Lí thuyết tổng hợp
- Phương trình một ẩn:
+ Phương trình một ẩn số x là mệnh đề chứa biến có dạng: f(x) = g(x) . Trong đó, ta có f(x) và g(x) là các biểu thức cùng biến số x, gọi f (x) là vế trái và g (x) là vế phải của phương trình.
+ Điều kiện xác định: Gọi và lần lượt là tập xác định của f(x) và g(x), khi đó là tập xác định của phương trình f(x) = g(x) .
+ Nghiệm của phương trình: Nếu có một số tồn tại thỏa mãn điều kiện xác định và là mệnh đề đúng thì ta nói là nghiệm đúng (hay là một nghiệm) của phương trình f(x) = g(x). Một phương trình có thể có số nghiệm hữu hạn, có vô số nghiệm hoặc vô nghiệm.
- Phương trình nhiều ẩn: Là phương trình chứa nhiều ẩn số (x, y, z,…).
- Phương trình chứa tham số: Trong một phương trình (một ẩn hay nhiều ẩn) ngoài các chữ đóng vai trò ẩn số (x, y, z,…) thì còn có thể có các chữ khác đóng vai trò như những hằng số (a, b, m,…) và được gọi là tham số.
- Phương trình tương đương: Hai phương trình và phương trình được gọi là tương đương nhau khi chúng có cùng tập nghiệm, kí hiệu : .
- Phép biến đổi tương đương: Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức
+ Nhân hoặc chia hai vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
- Phương trình hệ quả: Phương trình (2) là phương trình hệ quả của phương trình (1) khi tập nghiệm của phương trình (1) là tập con của tập nghiệm phương trình (2), kí hiệu: .
- Các định lí:
+ Nếu h(x) là biểu thức thỏa mãn điều kiện xác định của phương trình f(x) = g(x) thì: f(x) = g(x) f(x) h(x) = g(x) h(x).
+ Nếu h(x) là biểu thức thỏa mãn điều kiện xác định của phương trình f(x) = g(x) và khác 0 với mọi x thuộc tập xác định của phương trình thì:
f(x) = g(x) f(x). h(x) = g(x). h(x) hoặc f(x) = g(x) .
+ Khi bình phương hai vế của một phương trình ta được phương trình mới là phương trình hệ quả của phương trình đã cho: f(x) = g(x)
- Chú ý:
+ Các nghiệm của phương trình f(x) = g(x) là các hoành độ giao điểm của đồ thị hàm số y = f(x) và y = g(x).
+ Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.
+ Khi giải phương trình ta cần đặt điều kiện xác định cho phương trình và khi tìm được nghiệm của phương trình thì cần phải đối chiếu với điều kiện xác định.
+ Nếu hai vế của phương trình luôn cùng dấu thì bình phương hai vế ta được một phương trình mới tương đương với phương trình đã cho.
+ Khi biến đổi phương trình thu được phương trình hệ quả thì khi tìm được nghiệm của phương trình hệ quả phải thử lại phương trình ban đầu để loại bỏ nghiệm ngoại lai.
B. Các dạng bài
Dạng 1: Tìm điều kiện xác định, tập xác định của phương trình.
Phương pháp giải:
+ Điều kiện xác định của phương trình f(x) = g(x) bao gồm điều kiện để giá trị của hai biểu thức f(x) và g(x) cùng xác định và một số điều kiện khác (nếu đề bài yêu cầu).
+ Tập xác định của một hàm số là tập hợp các giá trị của biến số làm cho hàm số đó có nghĩa. Tức là ta biểu diễn điều kiện xác định của hàm số dưới dạng một tập hợp.
Lưu ý:
Điều kiện để biểu thức xác định là .
Điều kiện để biểu thức xác định là (với A là một số hoặc một biểu thức).
Điều kiện để biểu thức xác định là .
Ví dụ minh họa:
Bài 1: Tìm tập xác định của phương trình: .
Lời giải:
Điều kiện xác định của phương trình là :
Tập xác định của phương trình: .
Bài 2: Tìm tập xác định của phương trình .
Lời giải:
Điều kiện xác định của phương trình là:
Tập xác định của phương trình: .
Dạng 2: Giải phương trình bằng phương pháp biến đổi tương đương, phương trình hệ quả.
Phương pháp giải:
+ Cộng (trừ) cả hai vế của phương trình mà không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương phương trình đã cho.
+ Nhân (chia) vào hai vế với một biểu thức khác không và không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương với phương trình đã cho.
+ Bình phương hai vế của phương trình ta thu được phương trình hệ quả của phương trình đã cho.
+ Bình phương hai vế của phương trình (hai vế luôn cùng dấu) ta thu được phương trình tương đương với phương trình đã cho.
Ví dụ minh họa:
Bài 1: Tìm tập nghiệm của phương trình: .
Lời giải:
Điều kiện xác định:
Với điều kiện xác định như trên ta có:
Loại x = 3 vì không thỏa mãn điều kiện xác định.
Vậy tập nghiệm của phương trình: S = {-3}.
Bài 2: Tìm tập nghiệm của phương trình: .
Lời giải:
Điều kiện xác định:
Với điều kiện xác định trên ta có:
(thỏa mãn điều kiện xác định)
Vậy tập nghiệm của phương trình .
C. Bài tập vận dụng
Câu 1: Phương trình nào dưới đây là phương trình một ẩn ?
A. x – 4y + 7 = 3y – 5x
B. x + y + 2z = 4y – z
C. xy – 2yz = xyz
D. 3x + 5 = 8x + 5
Đáp án: D
Câu 2: Phương trình nào dưới đây là phương trình chứa tham số ?
A. 5x – y + 7 = 7y – 5x + m
B. 3x = 7x – 5
C. y + 4z = z + 2y
D. x + 4 = y + 5
Đáp án: A
Câu 3: “Hai phương trình tương đương là hai phương trình khác tập nghiệm”. Đúng hay sai ?
A. Đúng
B. Sai
Đáp án: B
Câu 4: “Phương trình 1 là phương trình hệ quả của phương trình 2 nếu tập nghiệm của phương trình 2 là tập con của tập nghiệm phương trình 1”. Đúng hay sai ?
A. Đúng
B. Sai
Đáp án: A
Câu 5: Tìm điều kiện xác định của phương trình:
Đáp án: ĐKXĐ:
Câu 6: Tìm tập xác định của phương trình:
Đáp án:
Câu 7: Tìm điều kiện xác định của phương trình:
Đáp án:
Câu 8: Tìm tập nghiệm của phương trình:
Đáp án:
Câu 9: Tìm tập nghiệm của phương trình:
Đáp án:
Câu 10: Tìm tập nghiệm của phương trình:
Đáp án: .
Xem các Phương pháp giải bài tập hay, chi tiết khác:
Các phương trình đưa về phương trình bậc nhất và cách giải bài tập
Các phương trình đưa về phương trình bậc hai và cách giải bài tập
Phương trình chứa ẩn dưới dấu căn và cách giải bài tập
Hệ phương trình lớp 10 và cách dạng bài tập
Công thức giải phương trình bậc nhất chi tiết nhất
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.