Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Hệ phương trình (50 bài tập minh họa) HAY NHẤT 2024 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:
Phương pháp giải Hệ phương trình (50 bài tập minh họa) HAY NHẤT 2024
A. Lí thuyết tổng hợp
- Hệ phương trình bậc nhất hai ẩn: Dạng tổng quát là (1) . Trong đó, x và y là hai ẩn, các chữ còn lại là hệ số. Nếu cặp số đồng thời là nghiệm của cả hai phương trình của hệ thì được gọi là một nghiệm của hệ phương trình (1). Giải hệ phương trình (1) là tìm tập nghiệm của nó.
+ Có hai phương pháp cơ bản để giải hệ phương trình trên, đó là phương pháp cộng đại số và phương pháp thế (đã học ở lớp 9).
- Hệ phương trình bậc nhất ba ẩn: Dạng tổng quát là (2). Trong đó x, y và z là ẩn số, còn các chữ còn lại là hệ số. Nếu bộ ba số đồng thời là nghiệm của cả ba phương trình của hệ thì được gọi là một nghiệm của hệ phương trình (2). Giải hệ phương trình (2) là tìm tập nghiệm của nó.
- Hệ phương trình bậc hai hai ẩn là hệ phương trình gồm các phương trình bậc hai chứa hai ẩn hoặc gồm một phương trình bậc nhất và một phương trình bậc hai chứa hai ẩn. Nếu cặp số đồng thời là nghiệm của các phương trình của hệ thì được gọi là một nghiệm của hệ phương trình.
B. Các dạng bài
Dạng 1: Hệ phương trình bậc nhất hai ẩn, ba ẩn.
Phương pháp giải:
- Hệ phương trình bậc nhất hai ẩn x, y:
+ Phương pháp thế: Từ một phương trình của hệ, ta biểu thị ẩn x theo y (hoặc y theo x). Thế biểu thức tìm được của x (hoặc của y) vào phương trình còn lại để được phương trình bậc nhất một ẩn. Giải phương trình bậc nhất vừa tìm được. Thay giá trị vừa tìm được của ẩn vào biểu thức tìm được trong bước thứ nhất để tìm giá trị của ẩn còn lại.
+ Phương pháp cộng đại số: Chọn ẩn muốn khử. Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ. Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ vế theo vế của hệ. Nếu các hệ số đó không bằng nhau thì ta nhân các vế của hai phương trình với số thích hợp sao cho các hệ số của x (hoặc y) trong hai phương trình của hệ là bằng nhau hoặc đối nhau. Rồi thực hiện các bước ở trên. Ta được một phương trình mới, trong đó ẩn muốn khử có hệ số bằng. Giải hệ phương trình gồm một phương trình mới và một phương trình đã cho. Ta suy ra nghiệm của hệ.
Đối với một số bài toán ta có thể kết hợp phương pháp đặt ẩn phụ để biến đổi hệ phương trình đã cho thành hệ phương trình đơn giản hơn với ẩn mới. Sau khi tìm được nghiệm của hệ phương trình mới, ta có thể tìm nghiệm của hệ phương trình ban đầu.
- Phương trình bậc nhất ba ẩn:
Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để quy về giải hệ phương trình có ít ẩn số hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số hay phương pháp thế giống như đối với hệ phương trình bậc nhất hai ẩn.
Ví dụ minh họa:
Bài 1: Giải hệ phương trình sau: bằng hai cách.
Lời giải:
Cách 1: Phương pháp thế.
Cách 2: Phương pháp cộng đại số.
Vậy hệ phương trình có duy nhất cặp nghiệm (x; y) = (1; 1).
Bài 2: Giải hệ phương trình
Lời giải:
Ta có:
Vậy hệ phương trình có nghiệm duy nhất (x; y; z) = (–2; 1; 2).
Dạng 2: Hệ phương trình bậc hai chứa hai ẩn.
Phương pháp giải:
Sử dụng phương pháp thế hoặc phương pháp cộng đại số để biểu diễn một ẩn theo ẩn kia từ một phương trình rồi thế vào phương trình còn lại để tìm ra ẩn đó. Từ đó tìm ra ẩn còn lại và kết luận nghiệm.
Ví dụ minh họa:
Bài 1: Giải hệ phương trình .
Lời giải:
Ta có:
Xét phương trình ta có: 1 – 6 + 5 = 0
Phương trình có hai nghiệm phân biệt:
Với x = 1 thì y = 5 – 2.1 = 3
Với x = 5 thì y = 5 – 2.5 = –5
Vậy hệ phương trình có hai nghiệm (x; y) là (1; 3) và (5; –5).
Bài 2: Giải hệ phương trình
Lời giải:
Điều kiện xác định: x ≠ 0.
Ta có:
(thế PT1 vào PT2)
Xét phương trình ta có: 1 – 3 + 2 = 0
Phương trình có hai nghiệm phân biệt: (t/m)
Với x = 1 ta có:
Với x = 2 ta có:
Vậy phương trình có nghiệm (x; y) là (1; 1) và
Dạng 3: Các hệ phương trình đặc biệt khác.
Phương pháp giải:
- Hệ phương trình đối xứng:
+ Loại 1: Có dạng (1) .
Trong đó, f(x, y) = f(y, x) và g(x, y) = g(y, x)
Muốn giải hệ phương trình này ta cần đặt S = x + y và P = x.y. Đưa hệ phương trình (1) về hệ phương trình ẩn S và P. Giải hệ phương trình đó để tìm được S và P và từ đó tìm ra x và y là hai nghiệm của phương trình .
+ Loại 2: Có dạng (2).
Ta có:
Biến đổi f (x,y) – f (y,x) = 0 thành phương trình tích ta được (x – y).g(x, y) = 0
Như vậy, hệ phương trình (2) .
Giải hệ này ta tìm được các nghiệm x và y.
Chú ý: Đối với cả hệ phương trình đối xứng loại 1 và loại 2, nếu là nghiệm thì cũng là nghiệm.
- Hệ phương trình đẳng cấp bậc hai: Có dạng (3)
+ Giải hệ khi x = 0 hoặc y = 0
+ Với , đặt y = t.x. Thế vào hệ (3) ta được hệ theo t và x. Khử x ta tìm được phương trình bậc hai theo t. Giải phương trình này ta tìm được t, từ đó suy ra x, y.
Ví dụ minh họa:
Bài 1: Giải các hệ phương trình sau:
a) ;
b) .
Lời giải:
a) (1)
Ta có: x + xy + y = y + yx + x ;
Nên đây là hệ phương trình đối xứng loại 1.
(1)
Đặt S = x + y và P = x.y
(1)
+ Với ta có x, y là hai nghiệm của phương trình
Xét phương trình có:
Phương trình có hai nghiệm phân biệt:
Ta có các nghiệm ( x; y ) là và .
+ Với ta có x, y là hai nghiệm của phương trình
Xét phương trình có:
Phương trình vô nghiệm
Vậy hệ phương trình (1) có nghiệm (x; y) là và .
b) (2)
(vì > 0 với mọi x, y)
Vậy hệ phương trình (2) có nghiệm (x; y) là (0; 0).
Bài 2: Giải hệ phương trình .
Lời giải:
Với x = 0, ta có:
Ta thấy (0; 0) không phải nghiệm của phương trình.
Với ta có:
Đặt y = t.x. Khi đó
(loại nghiệm x = 0)
Xét phương trình ta có: > 0
Phương trình có hai nghiệm phân biệt.
+ Với ta có:
Xét phương trình ta có:
Phương trình có hai nghiệm phân biệt.
Với
Với
Hệ phương trình có nghiệm (x; y) là và
+ Với ta có:
Xét phương trình ta có:
Phương trình có hai nghiệm phân biệt.
Với
Với
Hệ phương trình có nghiệm (x; y) là
và
Vậy hệ phương trình có nghiệm (x; y) là ,
và
C. Bài tập vận dụng
Bài 1: Giải hệ phương trình: .
Đáp án:
Bài 2: Giải hệ phương trình: .
Đáp án:
Bài 3: Giải hệ phương trình: .
Đáp án: (x; y; z) = (2; 1; 3).
Bài 4: Giải hệ phương trình:
Đáp án: và
Bài 5: Giải hệ phương trình:
Đáp án: (0; 1) , (0; –1); (–1; 1) và
Bài 6: Giải hệ phương trình: .
Đáp án: (x; y) = (1; 2)
Bài 7: Giải hệ phương trình: .
Đáp án: (2; 3) và (3; 2)
Bài 8: Giải hệ phương trình: .
Đáp án: (0; 0) , và
Bài 9: Giải hệ phương trình:.
Đáp án: (–1; –1) , (1; 1) , và
Bài 10: Giải hệ phương trình: .
Đáp án: (1; 1)
D. Bài tập tự luyện
Bài 1: Giải hệ phương trình
Lời giải:
a. Đặt S = x + y, P = xy (S2 - 4P ≥ 0)
Ta có :
⇒S2 - 2(5-S) = 5 ⇒ S2 + 2S - 15 = 0
⇒ S = -5; S = 3
S = -5⇒ P = 10 (loại)
S = 3⇒ P = 2(nhận)
Khi đó : x, y là nghiệm của phương trình X2 - 3X + 2 = 0
⇔ X = 1; X = 2
Vậy hệ có nghiệm (2; 1), (1; 2)
b. ĐKXĐ: x ≠ 0
Hệ phương trình tương đương với
Vậy hệ phương trình có nghiệm (x; y) là (1; 1) và (2; -3/2)
Bài 2: Giải hệ phương trình
Lời giải:
a. Hệ phương trình tương đương
Với x-y = 4 ⇒ x = y + 4 ⇒ y(y+4) + y + 4 - y = -1
⇔ y2 + 4y + 5 = 0 (vn)
Vậy nghiệm của hệ phương trình là (x; y) = {(0; 1), (-1; 0)}
b. Đặt S = x+y; P = xy, ta có hệ:
- Với S = 2 + √2; P = 2√2 ta có x, y là nghiệm phương trình:
Với S = -4-√2; P = 6 + 4√2 ta có x, y là nghiệm phương trình:
X2 + (4+√2)X + 6 + 4√2 = 0 (vô nghiệm)
Vậy hệ có nghiệm (x; y) là (2; √2) và (√2; 2)
Bài 3: Giải hệ phương trình
Lời giải:
a. Hệ phương trình tương đương
Vậy tập nghiệm của hệ phương trình là: (x; y) = {(0;0), (2;2)}
b. Trừ vế với vế của phương trình đầu và phương trình thứ hai ta được:(y2 - x2 = x3 - y3 - 3(x2 - y2) + 2(x-y) ⇔ (x-y)(x2 + xy + y2 - 2x - 2y + 2) = 0 ⇔ 1/2(x-y)[x2 + y2 + (x + y - 2)2] = 0 ⇔ x = y)
(vì x2 + y2 + (x+y-2)2 > 0)
Thay x = y vào phương trình đầu ta được:
x3 - 4x2 + 2x = 0 ⇔ x(x2 - 4x + 2) = 0
Vậy hệ phương trình có ba nghiệm: (0; 0); (2+√2; 2+√2) và (2-√2; 2-√2)
Bài 4: Giải hệ phương trình
Lời giải:
a. Ta có : x3 - 3x = y3 - 3y ⇔ (x-y)(x2 + xy + y2) - 3(x-y) = 0
⇔ (x-y)(x2 + xy + y2 - 3) = 0
Khi x = y thì hệ có nghiệm
Khi x2 + xy + y2 - 3 = 0 ⇔ x2 + y2 = 3 - xy, ta có x6 + y6 = 27
⇔ (x2 + y2)(x4 - x2y2 + y4) = 27
⇒ (3-xy)[(3-xy)2 - 3x2y2] = 27 ⇔ 3(xy)3 + 27xy = 0
Vậy hệ phương trình đã cho có 2 nghiệm
b. Hệ phương trình tương đương
Bài 5: Giải hệ phương trình
Lời giải:
a. Ta có
Nếu x = 0 thay vào (1)⇒ y = 0, thay vào (2) thấy (x; y) = (0; 0) là nghiệm
của phương trình (2) nên không phải là nghiệm của hệ phương trình
Nếu x ≠ 0, đặt y = tx , thay vào hệ ta được
Với t = 1/2 thay vào (**) ta được 4x2 + x2 + 6x = 27 ⇔ 5x2 + 6x - 27 = 0
Với t = 1/3 thay vào (**) ta được 4x2 + (2/3)x2 + 6x = 27
⇔ 14x2 + 18x - 81 = 0
Vậy hệ phương trình có nghiệm (x; y) là:
b. Dễ thấy x = 0 không thoả hệ
Với x ≠ 0, đặt y = tx, thay vào hệ ta được
Suy ra 3(t2 - t + 1) = 2t2 - 3t + 4 ⇒ t = ±1
Thay vào (*) thì
Vậy hệ phương trình có nghiệm (x; y) là (1/√3;(-1)/√3), ((-1)/√3;1/√3), (-1;-1) và (1;1)
Bài 6: Cho hệ phương trình. Tìm giá trị thích hợp của tham số a sao cho hệ có nghiệm (x; y) và tích x.y nhỏ nhất.
Lời giải:
Đặt S = x + y, P = xy (S2 - 4P ≥ 0)
Ta có
Đẳng thức xảy ra khi a = -1 (nhận)
Bài 7: Xác định m để hệ phương trìnhcó nghiệm
Lời giải:
Hệ phương trình tương đương
(x2 + y2 - 2xy) - (x + y - 4xy) = m + 1 - 2m ⇔ (x+y)2 - (x+y) + m - 1 = 0
Để hệ phương trình có nghiệm Δ ≥ 0 ⇔ 1 - 4(m-1) ≥ 0 ⇔ 5 - 4m ≥ 0
⇔ m ≤ 5/4
Từ phương trình thứ 2 ta có(x-y)2 = m + 1 ⇒ m + 1 ≥ 0 ⇔ m ≥ -1
Do đó -1 ≤ m ≤ 5/4
Xem các Phương pháp giải bài tập hay, chi tiết khác:
Công thức giải phương trình bậc nhất chi tiết nhất
Công thức giải phương trình bậc hai đầy đủ, chi tiết nhất
Tất tần tật về Hệ thức Vi-et | Công thức Hệ thức Vi-et
Công thức giải phương trình chứa dấu giá trị tuyệt đối chi tiết
Công thức giải phương trình chứa dấu căn chi tiết
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.