Phương pháp giải Bất đẳng thức chứa dấu giá trị tuyệt đối (HAY NHẤT 2024)

648

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Bất đẳng thức chứa dấu giá trị tuyệt đối (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phương pháp giải Bất đẳng thức chứa dấu giá trị tuyệt đối (HAY NHẤT 2024)

I. Lí thuyết tổng hợp

Từ định nghĩa giá trị tuyệt đối, ta có các tính chất như sau:

Với mọi số thực x có:  x0,xx, xx

Với mọi số thực x và số thực a > 0 có:

xaaxa

xaxa hoặc xa

Với mọi số thực a, b có:

aba+ba+b

II. Các công thức

Phương pháp giải Bất đẳng thức chứa dấu giá trị tuyệt đối (50 bài tập minh họa) (ảnh 1)

aba+b (Dấu bằng xảy ra khi ab và a.b0)

a+ba+b (Dấu bằng xảy ra khi a.b0)

III. Ví dụ minh họa

Bài 1: Chứng minh rằng x1+x21 với mọi số thực x.

Lời giải:

Ta có:

x2=(x2)=2x

Mặt khác:

x1+2xx1+2x

x1+2x1

x1+x21x  (điều cần phải chứng minh)

Bài 2: Chứng minh rằng: ab+cbac với mọi số thực a, b, c.

Lời giải:

Bất đẳng thức chứa dấu giá trị tuyệt đối chi tiết nhất - Toán lớp 10 (ảnh 1)

(điều cần phải chứng minh).

Bài 3: Chứng minh rằng x+x0 với mọi số thực x.

Lời giải:

Ta có: xx

x+xx+(x)

x+x0x(điều cần phải chứng minh).

IV. Bài tập vận dụng   

Bài 1: Chứng minh rằng: a+b+ca+b+c với mọi số thực a, b, c.

Bài 2: Cho x3;7. Chứng minh rằng x25.

Bài 3: Chứng minh rằng Chứng minh bất đẳng thức bằng giá trị tuyệt đốiChứng minh bất đẳng thức bằng giá trị tuyệt đối

Bài 4: Tìm tất cả các số nguyên x để biểu thức sau đây đạt giá trị nhỏ nhất: Chứng minh bất đẳng thức bằng giá trị tuyệt đối

Bài 5: Giải các bất phương trình: |2x – 5| ≤ x + 3

Bài 6: a)  Chứng minh rằng với mọi số thực a, b ta có |a ± b| ≥ |a| - |b|.
b) Biết rằng | a | > 2 | b |. Chứng minh rằng |a| < 2|a - b|.

Bài 7: Chứng minh rằng: a. Nếu x ≥ y ≥ 0 thì   Chứng minh bất đẳng thức bằng giá trị tuyệt đối 

b. Với hai số a, b tuỳ ý, ta có  Chứng minh bất đẳng thức bằng giá trị tuyệt đối

Bài 8: Giải các phương trình:

a) |2x|=x6

b) |3x|=x8

c) |4x|=2x+12

d) |5x|16=3x

Bài 9: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A=3x+2+|5x|trong hai trường hợp x0và x<0

b) B=|4x|2x+12trong hai trường hợp x0và x>0

c) C=|x4|2x+12khi x>5

d) D=3x+2+|x+5|

Bài 10: Giải các phương trình:

a) |x7|=2x+3

b) |x+4|=2x5

c) |x+3|=3x1

d) |x4|+3x=5

Bài 11: Cho m>n,chứng minh:

a) m+2>n+2

b) 2m<2n

c) 2m5>2n5

d) 43m<43n

Bài 12: Kiểm tra xem -2 là nghiệm của bất phương trình nào trong các bất phương trình sau:

a) 3x+2>5

b) 102x<2

c) x25<1

d) |x|<3

e) |x|>2

f) x+1>72x

Bài 13: Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

a) x1<3

b) x+2>1

c) 0,2x<0,6

d) 4+2x<5

Bài 14: Giải các bất phương trình:

a) 2x4<5                                           

b) 32x+35

c) 4x53>7x5

d) 2x+344x3

Bài 15: Giải các bất phương trình:

a) 32x>4

b) 3x+4<2

c) (x3)2<x23

d) (x3)(x+3)<(x+2)2+3

Bài 16: Tìm x sao cho:

a) Giá trị của biểu thức 52xlà số dương

b) Giá trị của biểu thức x+3nhỏ hơn giá trị của biểu thức 4x5

c) Giá trị của biểu thức 2x+1không nhỏ hơn giá trị của biểu thức x+3

d) Giá trị của biểu thức x2+1không lớn hơn giá trị của biểu thức (x2)2

Bài 17: Trong một cuộc thi đố vui. Ban tổ chức quy định mỗi người dự thi phải trả lời 10 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi này có sẵn 4 đáp án, nhưng trong đó chỉ có 1 đáp án đúng. Người dự thi chọn đáp án đúng sẽ được 5 điểm, chọn đáp án sai sẽ bị trừ đi 1 điểm. Ở vòng sơ tuyển, Ban tổ chức tặng cho mỗi người dự thi 10 điểm và quy định người nào có tổng số điểm từ 40 trở lên mới được dự thi ở vòng tiếp theo. Hỏi người dự thi phải trả lời chính xác bao nhiêu câu hỏi ở vong sơ tuyển thì mới được dự thi tiếp ở vòng sau?

Bài 18: Giải các phương trình:

a) |3x|=x+8

b) |2x|=4x+18

c) |x5|=3x

d) |x+2|=2x10

V. Bài tập tự luyện 

Bài 1: Biểu thức A = | 4x | + 2x - 1 với x < 0, rút gọn được kết quả là?

A. A = 6x - 1

B. A = 1 - 2x

C. A = - 1 - 2x

D. A = 1 - 6x

Lời giải:

Ta có: x < 0 ⇒ | 4x | = - 4x

Khi đó ta có: A = | 4x | + 2x - 1 = - 4x + 2x - 1 = - 2x - 1

Chọn đáp án C.

Bài 2: Tập nghiệm của phương trình: | 3x + 1 | = 5

A. S = { - 2 }

B. S = { 43 }

C. S = { - 2;43 }

D. S = { Ø }

Lời giải:

Ta có: | 3x + 1 | = 5 ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình đã cho là S = { - 2;43 }

Chọn đáp án C.

Bài 3: Tập nghiệm của phương trình |2 - 3x| = |5 - 2x| là?

A. S = { - 3;1 }

B. S = { - 3;75 }

C. S = { 0;75 }

D. S = { - 3;1 }

Lời giải:

Ta có: |2 - 3x| = |5 - 2x| ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của phương trình là S = { - 3;75 }

Chọn đáp án B.

Bài 4: Giá trị m để phương trình | 3 + x | = m có nghiệm x = - 1 là?

A. m = 2   

B. m = - 2

C. m = 1   

D. m = - 1

Lời giải:

Phương trình đã cho có nghiệm x = - 1 nên ta có: | 3 + ( - 1 ) | = m ⇔ m = 2.

Vậy m = 2 là giá trị cần tìm.

Chọn đáp án A.

Bài 5: Giá trị của m để phương trình | x - m | = 2 có nghiệm là x = 1 ?

A. m ∈ { 1 }

B. m ∈ { - 1;3 }

C. m ∈ { - 1;0 }

D. m ∈ { 1;2 }

Lời giải:

Phương trình có nghiệm x = 1, khi đó ta có:

| 1 - m | = 2 ⇔ Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị m cần tìm là m ∈ { - 1;3 }

Chọn đáp án B.

Bài 6: Rút gọn biểu thức A = |2x + 4| + 2(x - 3) với x > 0

A. 4x - 2 B. 3 – 4x C. -10 D. 4x -10

Lời giải:
Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 7: Với x > 2 thì |3 - (2x - 1)| bằng ?

A. 2x + 4 B. 2x - 4 C. 2x - 1 D. 2x – 2

Lời giải:
Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Bài 8: Tìm tất cả các giá trị của x thỏa mãn: |6 - 2(x + 2)| = 2 - 2x

A. x = 1 B. x < 1 C. x ≤ 1 D. x > 1

Lời giải:
Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 9: Giải phương trình sau: |x + 1| = 2x + 7

A. x = 8 hoặc x = -2

B. x = 2

C. x = 2 hoặc x = 8

D. x = 8

Lời giải:

Ta có: |x + 1| = x + 1 nếu x ≥ -1 Và |x + 1| = -x - 1 nếu x < -1

Để giải phương trình đã cho ta quy về giải hai phương trình sau:

* Phương trình x + 1 = 2x -7 với ⇔ -x = - 7 -1 ⇔ - x = -8 ⇔ x = 8 (thỏa mãn điều kiện )

* Phương trình –x – 1= 2x – 7 với x < -1

⇔ -x - 2x = -7 + 1

⇔ - 3x = - 6

⇔ x = 2 ( không thỏa mãn điều kiện x < -1)

Vậy nghiệm của phương trình đã cho là x = 8

Chọn đáp án D

Bài 10: Giải phương trình |2 - (x + 4)| = |2x - 3(x + 2)|

A. x = 3 hoặc x = -4

B. x = 1 hoặc x = -2

C. x = -4

D. x = 4 và x = 2

Lời giải:
Bài tập Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án
 

Xem các Phương pháp giải bài tập hay, chi tiết khác: 

Dấu của nhị thức bậc nhất chi tiết nhất

Công thức giải bất phương trình một ẩn chi tiết nhất

Công thức giải bất phương trình chứa dấu giá trị tuyệt đối chi tiết nhất

Dấu của tam thức bậc hai chi tiết nhất

Công thức giải bất phương trình bậc hai một ẩn chi tiết nhất

Đánh giá

0

0 đánh giá