Phương pháp giải Hệ trục tọa độ trong mặt phẳng (HAY NHẤT 2024)

219

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Hệ trục tọa độ trong mặt phẳng (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phương pháp giải Hệ trục tọa độ trong mặt phẳng (HAY NHẤT 2024)

A. Lí thuyết tổng hợp

- Trục tọa độ (gọi tắt là trục) :

Định nghĩa: Trục tọa độ là một đường thẳng mà trên đó đã xác định một điểm O gọi là điểm gốc và một vectơ đơn vị e.

Phương pháp giải Hệ trục tọa độ trong mặt phẳng (50 bài tập minh họa) (ảnh 1)

+ Kí hiệu: O;e

+ Tọa độ của điểm đối với trục: Cho M là một điểm tùy ý trên trục O;e. Khi đó, tồn tại duy nhất một số k sao cho OM=ke, ta gọi số k đó là tọa độ của điểm M đối với trục O;e.

+ Độ dài đại số trên trục: Cho hai điểm A và B trên trục O;e có tọa độ lần lượt là a và b. Khi đó, tồn tại duy nhất số h sao cho AB=he, ta gọi số h đó là độ dài đại số của vectơ AB trên trục O;e. Kí hiệu: h=AB¯ với AB¯=ba. Nếu AB cùng hướng với e thì AB¯=AB, nếu AB ngược hướng với e thì AB¯=AB.

Tính chất:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Hệ trục tọa độ:

Định nghĩa: Hệ trục tọa độ O;i;j gồm hai trục O;i và O;j vuông góc với nhau tại O. Điểm O gọi là gốc tọa độ. Trục O;i được gọi là trục hoành, kí hiệu là Ox. Trục O;j được gọi là trục tung, kí hiệu là Oy. Các vectơ i và j là các vectơ đơn vị và i=j=1. Hệ trục tọa độ O;i;j còn được kí hiệu là Oxy.

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Mặt phẳng Oxy: Mặt phẳng mà trên đó đã cho một hệ trục Oxy được gọi là mặt phẳng tọa độ Oxy hay gọi tắt là mặt phẳng Oxy.

Tọa độ của vectơ: Trong mặt phẳng Oxy, cho vectơ u tùy ý. Khi đó, tồn tại cặp số (x; y) duy nhất sao cho u=xi+yj, cặp số đó được gọi là tọa độ của vectơ u và kí hiệu là u= (x; y) hoặc u(x; y), trong đó, x được gọi là hoành độ và y được gọi là tung độ của vectơ u.

Tọa độ của một điểm: Trong mặt phẳng Oxy, cho điểm M tùy ý. Tọa độ của vectơ OM đối với hệ trục Oxy chính là tọa độ của điểm M đối với hệ trục đó. Tức là OM=xi+yjOM=(x;y)M(x;y) hoặc M = (x; y), trong đó, x được gọi là hoành độ và y được gọi là tung độ của điểm M.

+ Tọa độ của của trung điểm đoạn thẳng: Trong mặt phẳng Oxy cho các điểm A(xA;yA)B(xB;yB) và điểm M(xM;yM) là trung điểm của đoạn thẳng AB thì ta có: xG=xA+xB+xC3;yG=yA+yB+yC3.

Tọa độ của của trọng tâm tam giác: Trong mặt phẳng Oxy cho ba điểm không thẳng hàng A(xA;yA),B(xB;yB) , C(xC;yC) và điểm G(xG;yG) là trọng tâm của tam giác ABC thì ta có: xG=xA+xB+xC3;yG=yA+yB+yC3.

+ Tọa độ của các vectơ u+v,uv,ku: Trong mặt phẳng Oxy, cho hai vectơ u=(x1;y1) và v=(x2;y2), khi đó ta có:

u+v=(x1+x2;y1+y2)uv=(x1x2;y1y2)

ku=(kx1;ky1) với k

Tính chất:

• u(x;y)=v(x';y')x=x'y=y'

• Cho điểm M (x; y) tùy ý trong mặt phẳng Oxy, nếu MM1Ox,MM2Oy thì OM1=x,OM2=y.

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

• Trong mặt phẳng Oxy, cho hai điểm A(xA;yA) và B(xB;yB), khi đó AB=(xBxA;yByA)

• Trong mặt phẳng Oxy, vectơ u=(x1;y1) cùng phương với vectơ v=(x2;y2) với  v0 khi và chỉ khi tồn tại một số k sao cho:

u=kvx1=kx2y1=ky2x1x2=y1y2=kx1y2=x2y1

B. Các dạng bài

Dạng 1: Xác định tọa độ một điểm.

Phương pháp giải:

- Áp dụng các kiến thức về tọa độ của điểm trên trục và trong mặt phẳng:

+)OM=ke k là tọa độ của điểm M đối với trục O;e.

+) OM=xi+yjOM=(x;y)M(x;y)

+) Cho điểm M (x; y) tùy ý trong mặt phẳng Oxy, nếu MM1Ox,MM2Oy thì OM1=x,OM2=y.

+) Tọa độ trung điểm M của đoạn thẳng AB: xM=xA+xB2;yM=yA+yB2

+) Tọa độ trọng tâm G của tam giác ABC: xG=xA+xB+xC3;yG=yA+yB+yC3

- Áp dụng các kiến thức về tọa độ vectơ trong mặt phẳng:

+) Cho hai điểm A(xA;yA) và B(xB;yB), khi đó AB=(xBxA;yByA)

+) Cho hai vectơ u=(x1;y1) và v=(x2;y2)

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

u cùng phương với vectơ v (v0) khi và chỉ khi:

u=kvx1=kx2y1=ky2x1x2=y1y2=kx1y2=x2y1

Ví dụ minh họa:

Bài 1: Trong mặt phẳng Oxy, cho ba điểm A(3; 5), B(2; 4) và C(6; 1). Biết M là trung điểm của BC. Chứng minh ba điểm A, B, C tạo thành một tam giác. Tìm tọa độ điểm M và tọa độ trọng tâm G của tam giác ABC.

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Lời giải:

Điểm M (x; y) là trung điểm của BC nên ta có:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Điểm G (x’; y’) là trọng tâm của tam giác ABC nên ta có:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Bài 2: Trong mặt phẳng Oxy, cho ba điểm A, B, C không thẳng hàng biết A(1; 4) , B(3; 2) và C(6; 7). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Lời giải:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Dạng 2: Chứng minh một tính chất của một hình.

Phương pháp giải:

- Áp dụng kiến thức về tọa độ của điểm và vectơ trong mặt phẳng Oxy:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Ví dụ minh họa:

Bài 1: Chứng minh tính chất của các hình sau:

a) Chứng minh tam giác ABC là tam giác vuông cân tại A. Biết A(1; 1), B(1; 5) và C(5; 1) .

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

b) Biết rằng M(1; 1), N(7; 1) và P4;27+1. Chứng minh tam giác MNP là tam giác đều.

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

c) Chứng minh tứ giác ABCD là hình bình hành biết A(-5; 6), B(-1; 6), C(-2; 4) và D(-6; 4)

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Lời giải:

a)

Ta có:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

Từ (1) và (2) ta có tam giác ABC vuông cân tại A.

b)

Ta có:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

c)

Ta có:

Hệ trục tọa độ trong mặt phẳng và cách giải bài tập – Toán lớp 10 (ảnh 1)

C. Bài tập vận dụng 

Bài 1: Cho hai điểm A(3; 5), B(2; 5). Tìm tọa độ điểm C là trung điểm của AB.

Đáp số: C52;5

Bài 2: Cho ba điểm A(2; 7), B(4; 7) và D(1; 3). Tìm điểm C sao cho ABCD là hình bình hành.

Đáp số: C(3; 3)

Bài 3: Cho hình chữ nhật ABCD tâm O. Tìm tọa độ tâm O của hình chữ nhật, biết A(3; 4), B(6; 4), C(6; -1) và D(3; -1).

Đáp số: O92;32

Bài 4: Cho hình thoi ABCD cạnh a biết tâm A(1; 6), C(1; 8). Tìm tọa độ tâm O của hình thoi.

Đáp số: O(1; 7)

Bài 5: Cho tam giác ABC có trọng tâm G, biết G(2; 5), B(4; 6) và C(7; 9). Tìm tọa độ của điểm A.

Đáp số: A(-5; 0)

Bài 6: Cho điểm M(3; -4). Tìm tọa độ điểm M’ là hình chiếu vuông góc của M trên Ox.

Đáp số: M’(3; 0)

Bài 7: Cho hai điểm A(1; 2) và B(-2; 3), gọi B’ là điểm đối xứng với B qua A. Tìm tọa độ của B’.

Đáp số: B’(4; 1)

Bài 8: Cho tứ giác ABCD biết A(3; 4), B(3; 5), C(4; 5) và D(4; 4). Chứng minh ABCD là hình vuông.

Đáp số: Ta có: AB = AD = 1 và AB.AD=0 và  AB=DC ABCD là hình vuông

Bài 9: Cho bất đẳng thức a12+a22+b12+b22(a1+b1)2+(a2+b2)2. Chứng minh và cho biết điều kiện để dấu bằng xảy ra.

Đáp số: Áp dụng u+vu+v, dấu bằng xảy ra khi a1b2=a2b1

Bài 10: Cho x, y . Tìm giá trị nhỏ nhất của biểu thức:

S = x2+4y2+6x+9+x2+4y22x12y+10

Đáp số: Smin=5.

D. Bài tập tự luyện 

Câu 1: Vectơ nào sau đây cùng phương với vectơ u(-3;7)

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 2: Vectơ nào sau đây cùng hướng với vectơ u(-3;7)

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 3: Cho hai điểm A(2; -1), B(3; 0), điểm nào sau đây thẳng hàng với A, B?

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 4: Trên mặt phẳng tọa độ Oxy cho tam giác ABC. M, N, P lần lượt là trung điểm cách cạnh BC, CA, AB. Biết M(1; 2); N(3; – 5); P(5; 7). Tọa độ đỉnh A là:

A. A(7; 9)     B. A(– 2; 0)     C. A(7; – 2)   D. A(7; 0)

Câu 5: Cho u =(1/2;-5), v(m;4). Hai vectơ u và v cùng phương khi m bằng:

A. 1/2   B. 5/2   C. -2/5   D. 2

Câu 7: Vectơ nào trong các vectơ sau đây cùng hướng với vectơ u(4; -5)?

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 8: Trong các vectơ sau đây, có bao nhiêu cặp vectơ cùng phương?

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

A. Có 2 cặp

B. Có 3 cặp

C. Có 4 cặp

D. Có 5 cặp

Câu 9: Khẳng định nào sau đây là sai?

A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)

B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)

C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)

D. Điểm đối xứng của A(–2; 1) qua H(1; 1) là ( 4; 1)

Câu 10: Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hàng là:

A. m = – 7   B. m = – 5   C. m = 7   D. m = 5

Câu 11: Tọa độ điểm I của đoạn thẳng MN là:

A. I(0; 3)   B. I(–2; 2)   C. I(-3/2;3)   D. I(–3; 3)

Câu 12: Tọa độ điểm M’ đối xứng với điểm M qua điểm P là:

A. M’(18; 10)   B. M’(18; –10)   C. M'(9/2;1/2)   D. M’(9; – 7)

Câu 13: Tọa độ trọng tâm G của tam gác MNP là:

A. G(6; 3)   B. G(3;-1/2)   C. G(2; –1)   D. G(2; 1)

Câu 14: Tọa độ điểm D sao cho P là trọng tâm tam giác MND là:

A. D(10; 15)   B. D(30; –15)   C. D(20; 10)   D. D(10; 15)

Câu 15: Trên mặt phẳng tọa độ Oxy cho các điểm A(–1; 1); B(1; 2); C(4; 0). Tìm tọa độ điểm M sao cho ABCM là hình bình hành là:

A. M(2; 1)   B. M(2; –1)   C. M(–1; 2)   D. M(1; 2)

Câu 16: Cho tam giác ABC có A(–2; 2), B(6; –4), đỉnh C thuộc trục Ox. Tìm tọa độ trọng tâm G của tam giác ABC, biết rằng G thuộc trục Oy)

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 17: Cho tam giác ABC có A(–1; 1); B(5; –3); C(0; 2). Gọi G là trọng tâm của tam giác ABC. Hãy xác định tọa độ của điểm G1 là điểm đối xứng của G qua trục Oy.

Bài tập trắc nghiệm Hình học 10 | Câu hỏi trắc nghiệm Hình học 10

Câu 18: Trong mặt phẳng tọa độ Oxy cho các điểm A(3; 1); B(2; 2); C(1; 16); D(1; –6). Hỏi G(2; –1) là trọng tâm của tam giác nào trong các tam giác sau đây?

A. Tam giác ABD

B. Tam giác ABC

C. Tam giác ACD

D. Tam giác BCD

Câu 19: Cho M(2; 0), N(2; 2), P(–1; 3) là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tọa độ điểm B là:

A. B(1; 1)   B. B(–1; –1)   C. B(–1; 1)   D. B(–1; 5)

Xem các Phương pháp giải bài tập hay, chi tiết khác:

Phương trình đường thẳng và cách giải bài tập

Phương trình đường tròn và cách giải bài tập

Phương trình đường elip và cách giải bài tập

Công thức xác định vectơ chỉ phương của đường thẳng hay, chi tiết nhất

Công thức xác định vectơ pháp tuyến của đường thẳng hay, chi tiết nhất

Đánh giá

0

0 đánh giá