Công thức viết phương trình tổng quát của đường thẳng (HAY NHẤT 2024)

304

Toptailieu.vn biên soạn và giới thiệu Công thức viết phương trình tổng quát của đường thẳng (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:

Công thức viết phương trình tổng quát của đường thẳng (HAY NHẤT 2024)

I. Lý thuyết tổng hợp 

- Định nghĩa vectơ pháp tuyến: Vectơ n (n0) là vectơ pháp tuyến của đường thẳng Δ nếu giá của vectơ n vuông góc với đường thẳng Δ.

- Một đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ pháp tuyến của đường thẳng đó.

- Cho đường thẳng d đi qua điểm M0(x0;y0) và có vectơ pháp tuyến là n=(a;b), ta có phương trình tổng quát của đường thẳng d được viết dưới dạng:

a(xx0)+b(yy0)=0

ax+by+c=0 (với c=ax0by0).

II. Các công thức

- Công thức viết phương trình tổng quát của đường thẳng d:

+ Tìm vectơ pháp tuyến của d là: n=(a;b)

+ Tìm một điểm thuộc vào d là: M0(x0;y0)

+ Viết phương trình tổng quát của d như sau:

a(xx0)+b(yy0)=0

ax+by+c=0 (c=ax0by0)

III. Ví dụ minh họa

Bài 1: Cho đường thẳng d đi qua điểm A(1; 3) và có vectơ pháp tuyến là n=(1;3). Viết phương trình tổng quát của đường thẳng d.

Lời giải:

Đường thẳng d đi qua điểm A(1; 3) và có vectơ pháp tuyến là n=(1;3), ta có phương trình tổng quát của d là:

1(x1)+3(y3)=0

x1+3y9=0

x+3y10=0

Bài 2: Cho đường thẳng d đi qua điểm B(3; 5) và có vectơ chỉ phương u=(2;3). Viết phương trình tổng quát của đường thẳng d.

Lời giải:

Đường thẳng d có vectơ chỉ phương là u=(2;3) 

Vectơ pháp tuyến của d là n=(3;2)

Đường thẳng d đi qua điểm B(3; 5) , ta có phương trình tổng quát:

3(x3)+2(y5)=0

3x9+2y10=0

3x+2y19=0

Bài 3: Cho đường thẳng d đi qua điểm C(1; 0) và song song với đường thẳng d’ có vectơ pháp tuyến là n'=(2;5). Viết phương trình tổng quát của đường thẳng d.

Lời giải:

Vì d // d’ nên vectơ pháp tuyến của d là n có: n=n'=(2;5)

Đường thẳng d đi qua C(1; 0) , ta có phương trình tổng quát của đường thẳng d là:

2(x1)5(y0)=0

2x5y2=0

IV. Bài tập vận dụng 

Câu 1: Lập phương trình đường thẳng d đi qua điểm M( 2 ; 1) và nhận vecto n( -2 ; 1) làm VTPT ?

A. 2x + y - 5 = 0    B. - 2x + y + 3 = 0    C. 2x - y - 4 = 0    D. 2x + y - 1 = 0

Lời giải:

Đáp án: B

Đường thẳng d : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

⇒ Phương trình đường thẳng d : - 2(x - 2) + 1(y - 1) = 0

Hay (d) : -2x + y + 3 = 0.

Câu 2: Cho đường thẳng (a) : 2x+ y- 3=0 và (b) : 3x- 4y+ 1= 0. Lập phương trình đường thẳng d đi qua giao điểm của hai đường thẳng a và b ; nhận vecto n( 2 ; -3) làm VTPT ?

A. 2x - 3y + 6 = 0    B. -2x - 3y + 6 = 0    C. 2x - 3y + 1 = 0    D. 2x + 3y - 1 =0

Lời giải:

Đáp án: C

+ Giao điểm A của hai đường thẳng a và b là nghiệm hệ phương trình :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ⇒ A( 1 ; 1)

+ Đường thẳng (d) : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

⇒ Phương trình đường thẳng d : 2(x - 1) - 3(y - 1) = 0 hay 2x - 3y + 1 = 0.

Câu 3: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; -1), B(4; 5) và    C( -3; 2) . Lập phương trình đường cao của tam giác ABC kẻ từ B

A. 3x - 5y + 1 = 0    B. 3x + 5y - 20 = 0    C. 3x + 5y - 12 = 0    D. 5x - 3y -5 = 0

Lời giải:

Đáp án: D

Gọi H là chân đường vuông góc kẻ từ B của tam giác ABC.

Đường thẳng BH : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

⇒ Phương trình đường cao BH :

5(x - 4) – 3(y - 5) = 0 hay 5x - 3y – 5 = 0

Câu 4: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1) ; B( 4;5) và   C( -3; 2). Tìm trực tâm tam giác ABC?

A. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ; - Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay )    B. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay )    C. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay )    D. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay )

Lời giải:

Đáp án: B

+ Gọi H và K lần lượt là chân đường vuông góc kẻ từ C và B của tam giác ABC.

+ Đường thẳng CH : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

⇒ Phương trình đường cao CH :

2(x + 3) + 6(y - 2) = 0 hay 2x + 6y – 6 = 0

⇔ (CH) : x+ 3y – 3= 0

+ Đường thẳng BK : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

=>Phương trình đường cao BK : - 5(x - 4) + 3(y - 5)=0 hay -5x + 3y + 5 = 0.

+ Gọi P là trực tâm tam giác ABC. Khi đó P là giao điểm của hai đường cao CH và BK nên tọa độ điểm P là nghiệm hệ :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

Vậy trực tâm tam giác ABC là P( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay )

Câu 5: Cho tam giác ABC có A( 2;-1) ; B( 4; 5) và C( -3; 2). Phương trình tổng quát của đường cao AH của tam giác ABC là:

A. 3x - 7y + 11 = 0.    B. 7x + 3y - 11 = 0    C. 3x - 7y - 13 = 0.    D. 7x + 3y + 13 = 0.

Lời giải:

Đáp án: B

Gọi AH là đường cao của tam giác.

Đường thẳng AH : đi qua A( 2; -1) và nhận BC = (-7; -3) = - (7; 3) làm VTPT

=> Phương trình tổng quát AH: 7(x - 2) + 3(y + 1)= 0 hay 7x + 3y - 11 = 0

Câu 6: Cho đường thẳng (d): 3x- 2y+ 8= 0. Đường thẳng ∆ đi qua M(3; 1) và song song với (d) có phương trình:

A. 3x - 2y - 7 = 0.    B. 2x + 3y - 9 = 0.    C. 2x - 3y - 3 = 0.    D. 3x - 2y + 1 = 0

Lời giải:

Đáp án: A

Do ∆ song song với d nên có phương trình dạng: 3x - 2y + c = 0 (c ≠ 8)

Mà ∆ đi qua M (3;1) nên 3.3 - 2.1 + c = 0 nên c = - 7

Vậy phương trình ∆: 3x - 2y - 7 = 0

Câu 7: Cho tam giác ABC có B(2; -3). Gọi I và J lần lượt là trung điểm của AB và AC. Biết đường thẳng IJ có phương trình x- y+ 3= 0. Lập phương trình đường thẳng BC?

A. x + y + 2 = 0    B. x - y - 5 = 0    C. x - y + 6 = 0    D. x - y = 0

Lời giải:

Đáp án: B

Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC.

⇒ IJ// BC.

⇒ Đường thẳng BC có dạng : x - y + c = 0 ( c ≠ 3)

Mà điểm B thuộc BC nên: 2 - (-3) + c = 0 ⇔ c = -5

⇒ phương trình đường thẳng BC: x - y - 5 = 0

Câu 8: Cho tam giác ABC cân tại A có A(3 ; 2). Gọi M là trung điểm của BC và          M( -2 ; -4). Lập phương trình đường thẳng BC ?

A. 6x - 5y + 13 = 0    B. 5x - 6y + 6 = 0    C. 5x + 6y + 34 = 0    D. 5x + 6y + 1 = 0

Lời giải:

Đáp án: C

+ Do tam giác ABC cân tại A nên đường trung tuyến AM đồng thời là đường cao

⇒ AM vuông góc BC.

⇒ Đường thẳng BC nhận AM( - 5; -6) = -(5; 6) làm VTPT

+ Đường thẳng BC : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

⇒ Phương trình đường thẳng BC :

5(x + 2) + 6( y + 4) = 0 hay 5x + 6y + 34= 0

Câu 9: Viết phương trình tổng quát của đường thẳng d đi qua điểm M( -1; 2) và song song với trục Ox.

A. y + 2 = 0    B. x + 1 = 0    C. x - 1 = 0    D. y - 2 = 0

Lời giải:

Đáp án: D

Trục Ox có phương trình y= 0

Đường thẳng d song song với trục Ox có dạng : y + c = 0 ( c ≠ 0)

Vì đường thẳng d đi qua điểm M( -1 ;2) nên 2 + c = 0 ⇔ c= -2

Vậy phương trình đường thẳng d cần tìm là : y - 2= 0

V. Bài tập tự luyện 

Bài 1: Viết phương trình tổng quát của đường thẳng d trong các trường hợp sau:

BTPT TỔNG QUÁT ĐƯỜNG THẲNG

Bài 2: Viết phương trình tổng quát của đường thẳng d trong các trường hợp sau:

Bài 3: Viết phương trình tổng quát của đường thẳng d trong các trường hợp sau:

TỔNG QUÁT ĐƯỜNG THẲNG

Bài 4: Cho tam giác ABC có A(2; -4), B(0; 1), C(3; 5)

a. Viết phương trình các cạnh của tam giác ABC
b. Viết phương trình các đường cao của tam giác ABC
c. Viết phương trình các đường trung tuyến của tam giac ABC
d. Viết phương trình đường trung trực các cạnh của tam giác
e. Viết phương trình đường thẳng AG với G là trọng tâm tam giác ABC
 
Xem các Phương pháp giải bài tập hay, chi tiết khác: 
Đánh giá

0

0 đánh giá