Công thức khai triển nhị thức Niu – tơn (50 bài tập minh họa) HAY NHẤT 2024

340

Toptailieu.vn biên soạn và giới thiệu Công thức khai triển nhị thức Niu – tơn (50 bài tập minh họa) HAY NHẤT 2024 hay, chi tiết nhất, từ cơ bản đến nâng cao giúp học sinh nắm vững kiến thức về hỗn số, từ đó học tốt môn Toán 11.

Công thức khai triển nhị thức Niu – tơn (50 bài tập minh họa) HAY NHẤT 2024

1. Tổng hợp lý thuyết

a) Định nghĩa:

Phương pháp giải Công thức khai triển nhị thức Niu – tơn (50 bài tập minh họa) (ảnh 1)

b) Nhận xét:

Trong khai triển Niu - tơn (a + b)n có các tính chất sau

- Gồm có n + 1 số hạng

- Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n

- Tổng các số mũ của a và b trong mỗi số hạng bằng n

- Các hệ số có tính đối xứng: Cnk=Cnnk

- Quan hệ giữa hai hệ số liên tiếp: Cnk+Cnk+1=Cn+1k+1

- Số hạng thứ k + 1 của khai triển: Tk+1=Cnkankbk

Ví dụ:

Số hạng thứ nhất T1=T0+1=Cn0an, số hạng thứ k: Tk=T(k1)+1=Cnk1ank+1bk1

c) Hệ quả:

Ta có: (1+x)n=Cn0+xCn1+x2Cn2+...+xnCnn

Từ khai triển này ta có các kết quả sau

Cn0+Cn1+...+Cnn=2nCn0Cn1+Cn2...+-1nCnn=0

2. Công thức tính

Công thức khai triển nhị thức Niu – tơn:

Công thức khai triển nhị thức Niu-tơn đầy đủ, chi tiết nhất - Toán lớp 11 (ảnh 1)

3. Ví dụ minh họa

Ví dụ 1: Khai triển (1 – 3x)6 thành tổng các đơn thức.

Lời giải

Áp dụng công thức khai triển nhị thức Niu – tơn:

(1 – 3x)6

=C60.16+C61.153x1+C62.143x2+C63.133x3+C64.123x4+C65.113x5+C663x6

= 1 – 18x + 135x2 – 540x3 + 1215x4 – 1458x5 + 729x6.

Ví dụ 2: Khai triển (x + 2y)5 thành tổng các đơn thức.

Lời giải

Áp dụng công thức khai triển nhị thức Niu – tơn:

(x + 2y)5

=C50x5+C51x42y+C52x32y2+C53x22y3+C54x2y4+C552y5

= x5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y5.

4. Bài tập vận dụng

Câu 1: Tính hệ số x10y8 trong khai triển ( x + y)18?

A.43758    B.23145    C.45    D.12458

Hướng dẫn giải :

Đáp án : A

Theo công thức nhị thức Niu- tơn; hệ số chứa x10.y8 là: Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 2: Tìm hệ số của x4 trong khai triển ( 2x- 5)7

A.175000    B.–70000    C.70000    D.-175000

Hướng dẫn giải :

Đáp án : B

Ta có: (2x – 5)7 = [ (2x + (-5)]7

Theo công thức nhị thức Niu-tơn; số hạng chứa x4 là: Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Do đó hệ số của x4 là: Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 3: Trong khai triển nhị thức (x + 1)n+9. Có tất cả 17 số hạng. Vậy n bằng:

A.10    B.17    C.9    D.12

Hướng dẫn giải :

Đáp án : C

Chú ý: Số các số hạng của khai triển mũ n là n + 1.

Vậy khai triển (x+1)n+ 9 có tất cả 17 số hạng suy ra n + 9= 17 + 1.

⇔ n + 9= 18 nên n= 9

Câu 4: Tìm hệ số chứa x9 trong khai triển

(1+x)9+(1+x)10+(1+x)11+(1+x)12+(1+x)13+(1+x)14+(1+x)15

Hướng dẫn giải :

Đáp án : B

+ Trong khai triển (1+x)9 thì số hạng chứa x9 là: Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

+ Tương tự hệ số chứa x9 trong các khai triển ( 1+x)10; ( 1+ x)11; ( 1+ x)12; ...; ( 1+ x)15 

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Do đó; hệ số chứa x9 cần tìm là:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay .

Câu 5: Trong khai triển Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay , hai số hạng cuối là:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay .

Hướng dẫn giải :

Đáp án : A

Ta có:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay là hai số hạng cuối cùng của khai triển

Câu 6: Trong khai triển (2∛x+3√x )10,(x>0) số hạng chứa x4 sau khi khai triển là

A.1808640    B.1088640x4    C.1808460x4    D.207360

Hướng dẫn giải :

Đáp án : B

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

 

Câu 7: Hệ số của số hạng chứa x9 trong khai triển (4/3-3x3)15 

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Hướng dẫn giải :

Đáp án : D

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 8: Trong khai triển (1+ 3x)20 với số mũ tăng dần, hệ số của số hạng đứng chính giữa là:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Hướng dẫn giải :

Đáp án : D

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

5. Bài tập tự luyện

Câu 1: Số hạng không chứa x trong khai triển là

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay
Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Lời giải:

Đáp án : B

Ta có số hạng thứ k+ 1 là :

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Số hạng không chứa x tương ứng với: (60-5k)/6=0

⇔ 60 – 5k= 0 ⇔ k= 12.

Do vậy số hạng cần tìm là: Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 2: Trong khai triển ( x - y)11, hệ số của số hạng chứa x8y3 là:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Lời giải:

Đáp án : A

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 3: Trong khai triển nhị thức (2+ x)6 xét các khẳng định sau:

I. Gồm có 7 số hạng.

II. Số hạng thứ 3 là 16x.

III. Hệ số của x5 là 12.

Trong các khẳng định trên

A. Chỉ I và III đúng

B. Chỉ II và III đúng

C. Chỉ I và II đúng

D. Cả ba đúng

Lời giải:

Đáp án : A

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 4: Có bao nhiêu số hạng hữu tỉ trong khai triển Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay.

A.37    B.38    C.36    D.39

Lời giải:

Đáp án : B

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

⇒ k= 8t ( với t nguyên)

Lại có: 0≤k≤300 nên 0≤8t≤300

⇔ 0≤t≤37,5. Mà t nguyên nên t ∈ {0,1,2,3..., 37}.

Có 38 giá trị nguyên của t thỏa mãn. Suy ra có 38 giá trị của k thỏa mãn.

⇒ Có 38 số hạng hữu tỉ trong khai triển đã cho.

Câu 5: Tìm hệ số của x5 trong khai triển P(x) = ( x+1)6 +(x+ 1)7 + ( x+ 1)8 + ..+ (x+ 1)12 .

A.1711    B.1287    C.1716    D.1715

Lời giải:

Đáp án : D

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 6: Tìm hệ số chứa x12 trong khai triển ( 3x+ x2)10

A.145654    B.298645    C.295245    D.Đáp án khác

Lời giải:

Đáp án :

Theo khai triển nhị thức Niu-tơn, ta có số hạng thứ k+ 1 trong khai triển là:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 7: Khai triển đa thức P(x) = (5x - 1)2003 ta được :

P(x)= a2003.x2003 + a2002.x2002 + ...+ a1x+ a0.

Mệnh đề nào sau đây đúng?

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Lời giải:

Đáp án : C

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 8: Tìm hệ số chứa x4 trong khai triển (2x+ 1/2x)10

A.1960    B.1920    C.1864    D.1680

Lời giải:

Đáp án : B

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 9: Tìm số hạng không chứa x trong khai triển: ( xy2- 1/xy)8

A.70y4 B.25y4 C.50y5 D.80y4

Lời giải:

Đáp án :

Theo khai triển nhị thức Niu-tơn, ta có:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Số hạng không chứa x ứng với: 8 - 2k=0 ⇔ k= 4

⇒ số hạng cần tìm Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Câu 10: Tìm số hạng đứng vị trí chính giữa trong khai triển: ( x2+ xy)20

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Lời giải:

Đáp án : D

Theo khai triển nhị thức Niu-tơn, ta có:

Cách khai triển nhị thức Newton: tìm hệ số, số hạng trong khai triển cực hay

Xem thêm các Phương pháp giải bài tập hay, chi tiết khác: 

Công thức tính tổng các hệ số trong khai triển nhị thức Niu-tơn

Công thức tìm hệ số trong khai triển nhị thức Niu-tơn

Công thức tìm số hạng trong khai triển nhị thức Niu-tơn

Công thức tính xác suất

Phương pháp quy nạp toán học và cách giải

 

Đánh giá

0

0 đánh giá