Toptailieu.vn biên soạn và giới thiệu Công thức tìm hệ số trong khai triển nhị thức Niu-tơn (50 bài tập minh họa) HAY NHẤT 2024 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 11 từ đó học tốt môn Toán. Mời các bạn đón xem:
Công thức tìm hệ số trong khai triển nhị thức Niu-tơn (50 bài tập minh họa) HAY NHẤT 2024
1. Tổng hợp lý thuyết
Xét khai triển: (với a,b là các hệ số; x,y là biến)
- Số hạng thứ k + 1 của khai triển:
- Hệ số của số hạng thứ k + 1 của khai triển:
2. Các công thức
* Với khai triển (axp + bxq)n (p,q là các hằng số)
Ta có:
Số hạng chứa xm ứng với giá trị k thỏa mãn: np – pk + qk = m
Từ đó tìm
Vậy hệ số của số hạng chứa xm là: với giá trị k đã tìm được ở trên.
* Với khai triển P(x) = (a + bxp + cxq)n (p,q là các hằng số)
Ta có:
Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của xm.
* Chú ý:
- Nếu k không nguyên hoặc k > n thì trong khai triển không chứa xm, hệ số phải tìm bằng 0.
- Nếu hỏi hệ số không chứa x tức là tìm hệ số chứa x0.
3. Ví dụ minh họa
Ví dụ 1: Tìm hệ số của x9 trong khai triển: (1 – 2x)=1515
Lời giải
Khai triển:
Cần tìm hệ số của x9 nên k = 9.
Vậy hệ số của x9 trong khai triển là: .
Ví dụ 2: Tìm hệ số không chứa x trong khai triển:
Lời giải
Khai triển:
Cần tìm hệ số không chứa x nên
Vậy hệ số không chứa x trong khai triển là: .
4. Bài tập vận dụng
Bài 1: Tìm hệ số của x5 trong khai triển đa thức của: x(1-2x)5+x2 (1+3x)10
Hướng dẫn giải:
Đặt f(x)=x(1-2x)5+x2 (1+3x)10
Ta có :
Vậy hệ số của x5 trong khai triển đa thức của f(x) ứng với k = 4 và i = 3 là:
Bài 2: Đa thức P(x) =(1+3x+2x2)10=a0 + a1 x + ⋯ + a20 x20. Tìm a15
Hướng dẫn giải:
với 0 ≤ i ≤ k ≤ 10. Do đó k + i = 15 với các trường hợp
k=10, i=5 hoặc k=9, i=6 hoặc k=8, i=7
Bài 3: Tìm hệ số không chứa x trong các khai triển sau (x3 - (2/x))n, biết rằng
Hướng dẫn giải:
5. Bài tập tự luyện
Bài 1: Tìm hệ số cuả x8 trong khai triển đa thức f(x)=[1+x2 (1-x)]8
Lời giải:
Trong khai triển trên ta thấy bậc của x trong 3 số hạng đầu nhỏ hơn 8, bậc của x trong 4 số hạng cuối lớn hơn 8. Do đó x8 chỉ có trong số hạng thứ tư, thứ năm với hệ số tương ứng là:
Vậy hệ số cuả x8 trong khai triển đa thức [1+x2 (1-x)]8 là:
a8 = = 238.
Bài 2: Đa thức P(x) = (1 + 3x + 2x2)10 = a0 + a1 x+⋯+a20 x20.. Tìm a15
Lời giải:
Ta có:
với 0 ≤ i ≤ k ≤ 10. Do đó k+i = 15 với các trường hợp
k=10, i=5 hoặc k=9, i=6 hoặc k=8, i=7
Bài 3: Trong khai triển (2a-b)5, hệ số của số hạng thứ bằng bao nhiêu?
Lời giải:
Bài 4: Trong khai triển nhị thức (a+2)n+6,(n ϵ Z). Có tất cả số hạng. Vậy n bằng bao nhiêu?
Lời giải:
Trong khai triển (a+2)(n+6),(n ϵ N) có tất cả n+7 số hạng.
Do đó n+7 =17 ⇔ n=10.
Bài 5: Trong khai triển (3x2-y)10, hệ số của số hạng chính giữa là bao nhiêu?
Lời giải:
Trong khai triển (3x2-y)10 có tất cả 11 số hạng nên số hạng chính giữa là số hạng thứ 6.
Vậy hệ số của số hạng chính giữa là .
Xem các Phương pháp giải bài tập hay, chi tiết tại:
Công thức tìm số hạng trong khai triển nhị thức Niu-tơn
Phương pháp quy nạp toán học và cách giải
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.