Công thức nguyên hàm (50 bài tập minh họa) HAY NHẤT 2024

231

Toptailieu.vn biên soạn và giới thiệu Công thức nguyên hàm (50 bài tập minh họa) HAY NHẤT 2024 gồm đầy đủ các phần ý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh nắm vững lý thuyết, biết cách giải các dạng bài tập Công thức nguyên hàm từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán.

Công thức nguyên hàm (50 bài tập minh họa) HAY NHẤT 2024

1. Định nghĩa

    Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.

    Kí hiệu: ∫ f(x)dx = F(x) + C.

Định lí 1:

   1) Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

    2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

    Do đó F(x) + C; C ∈ R là họ tất cả các nguyên hàm của f(x) trên K.

2. Tính chất của nguyên hàm

    • (∫ f(x)dx)' = f(x) và ∫ f'(x)dx = f(x) + C.

    • Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).

    • ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.

    • ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.

3. Sự tồn tại của nguyên hàm

Định lí:

    Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

4. Bảng công thức nguyên hàm

Bảng công thức tính nguyên hàm đầy đủ, chi tiết và bài tập vận dụng (ảnh 3)

Bảng công thức tính nguyên hàm đầy đủ, chi tiết và bài tập vận dụng (ảnh 2)

 

Đặc biệt:

5. Một số phương pháp tìm nguyên hàm

1. Phương pháp đổi biến

1.1. Đổi biến dạng 1

    a. Định nghĩa.

    Cho hàm số u = u(x) có đạo hàm liên tục trên K và hàm số y = f(u) liên tục sao cho f[u(x)] xác định trên K. Khi đó, nếu F là một nguyên hàm của f, tức là: ∫ f(u)du = F(u) + C thì:

 f[u(x)]u'(x)dx = F[u(x)] + C

    b. Phương pháp giải

    Bước 1: Chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.

    Bước 2: Tính vi phân hai vế: dt = φ'(t)dt.

    Bước 3: Biểu thị: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

    Bước 4: Khi đó: I = ∫ f(x)dx = ∫g(t)dt = G(t) + C.

1.2. Phương pháp đổi biến loại 2

    a. Định nghĩa:

    Cho hàm số f(x) liên tục trên K; x = φ(t) là một hàm số xác định, liên tục trên K và có đạo hàm là φ'(t). Khi đó, ta có:

 f(x)dx = ∫ f[φ(t)].φ'(t)dt

    b. Phương pháp chung

    Bước 1: Chọn x = φ( t), trong đó φ(t) là hàm số mà ta chọn thích hợp.

    Bước 2: Lấy vi phân hai vế: dx = φ'(t)dt.

    Bước 3: Biến đổi: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

    Bước 4: Khi đó tính: ∫ f(x)dx = ∫g(t)dt = G(t) + C.

    c. Các dấu hiệu đổi biến thường gặp

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

2. Phương pháp nguyên hàm từng phần

    a. Định lí

    Nếu u(x), v(x) là hai hàm số có đạo hàm liên tục trên K:

u(x).v'(x)dx = u(x).v(x) - ∫v(x).u'(x)dx

    Hay ∫udv = uv - ∫vdu

    (với du = u'(x)dx, dv = v'(x)dx)

    b. Phương pháp chung

    Bước 1: Ta biến đổi tích phân ban đầu về dạng: I = ∫ f(x)dx = ∫ f1(x).f2(x)dx

    Bước 2: Đặt: Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Bước 3: Khi đó: ∫u.dv = u.v - ∫v.du

    c. Các dạng thường gặp

    Dạng 1

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Dạng 2

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Dạng 3

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Bằng phương pháp tương tự ta tính được Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12 sau đó thay vào I.

6. Bài tập vận dụng

Bài 1: Tìm I=∫(3x2 - x + 1)exdx

A. I = (3x2 - 7x +8)ex + C    

B. I = (3x2 - 7x)ex + C

C. I = (3x2 - 7x +8) + ex + C    

D. I = (3x2 - 7x + 3)ex + C

Lời giải:

Sử dụng phương pháp tính nguyên hàm từng phần ta có:

Đặt u = 3x2 - x + 1 và dv = exdx ta có du = (6x - 1)dx và v = ex . Do đó:

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - ∫(6x - 1)exdx

Đặt u1 = 6x - 1; dv1 = exdx Ta có: du1 = 6dx và v1 = ex .

Do đó ∫(6x - 1)exdx = (6x - 1)ex - 6∫exdx = (6x - 1)e- 6ex + C

Từ đó suy ra

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - (6x - 7)ex + C = (3x2 - 7x + 8)ex + C

Vậy chọn đáp án A.

Bài 2:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = ex + 1 ⇒ u' = ex. Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Trong các hàm số sau hàm số nào không phải là một nguyên hàm của f(x) = cosxsinx ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Cách 1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2. Sử dụng phương pháp biến đổi số ta có:

Đặt u = cosx thì u’ = -sinx và ∫sinxcosxdx = -∫u.u'dx = -∫udu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Bài 4: Tìm I = ∫cos(4x + 3)dx .

A. I = sin(4x + 2) + C    

B. I = - sin(4x + 3) + C

C. I = (14).sin(4x + 3) + C   

D. I = 4sin(4x + 3) + C

Lời giải:

Đặt u = 4x + 3

⇒ du = 4dx ⇒ dx = 14 du và cos(4x+3)dx được viết thành

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 6: Trong các mệnh đề sau mệnh đề nào nhận giá trị đúng?

A. Hàm số y = 1x có nguyên hàm trên (-∞; +∞).

B. 3x2 là một số nguyên hàm của x3 trên (-∞; +∞).

C. Hàm số y = |x| có nguyên hàm trên (-∞;+∞).

D. 1x + C là họ nguyên hàm của ln⁡x trên (0;+∞).

Lời giải:

Dựa vào định lí: Mọi hàm số liên tục trên K đều có nguyên

hàm trên K. Vì y = |x| liên tục trên R nên có nguyên hàm trên R .

Phương án A sai vì y=1x không xác định tại x=0 ∈ (-∞;+∞).

Phương án B sai vì 3x2 là đạo hàm của x3.

Phương án D sai vì 1x là đạo hàm của ln⁡x trên (0; +∞).

Vậy chọn đáp án C.

Bài 7:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Xem các Phương pháp giải bài tập hay, chi tiết khác: 

Đánh giá

0

0 đánh giá