Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC

430

Với Giải Bài 4.59 trang 73 SBT Toán 11 Tập 1 trong Bài tập cuối chương 4 trang 72 Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC

Bài 4.59 trang 73 SBT Toán 11 Tập 1Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC lần lượt tại E, F.

a) Xác định giao tuyến của hai mặt phẳng (EAB) và (FCD).

b) Chứng minh rằng tứ giác AEFD là hình thang.

c) Xác định giao tuyến của hai mặt phẳng (ECD) và (FAB).

d) Chứng minh rằng giao tuyến của hai mặt phẳng (ECD) và (FAB) song song với giao tuyến của hai mặt phẳng (EAB) và (FCD).

Lời giải:

SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4 trang 72 (ảnh 7)

a) Vì AB//CD nên giao tuyến của hai mặt phẳng (EAB) và (FCD) là đường thẳng m đi qua S và song song với AB.

b) Vì AD//BC nên AD//(SBC)

Vì mặt phẳng (P) chứa đường thẳng AD song song với mặt phẳng (SBC) nên giao tuyến EF của hai mặt phẳng đó song song với AD. Do đó, tứ giác AEFD là hình thang.

c) Trong mặt phẳng (AEDF), gọi L là giao điểm của AF và ED.

Trong mặt phẳng (SBC), gọi K là giao điểm của BF và CE.

Khi đó, giao tuyến của hai mặt phẳng (ECD) và (FAB) là đường thẳng KL.

d) Hai mặt phẳng (ECD) và (FAB) lần lượt

Đánh giá

0

0 đánh giá