Với Giải Bài 27 trang 99 SBT Toán 11 Tập 2 trong Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a
Bài 27 trang 99 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a. Gọi α, β, γ lần lượt là số đo của các góc nhị diện [B, SA, C], [A, BC, S], [A, SC, B]. Tính:
a) cosα, cosβ;
b*) cosγ.
Lời giải:
a) Do SA ⊥ (ABC) nên SA ⊥ AB, SA ⊥ AC và SA ⊥ BC.
· Ta có: AB ⊥ SA, AC ⊥ SA và AB ∩ AC = A ∈ SA.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [B, SA, C], tức là
Xét tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 ⇒ AC2 = (3a)2 + (4a)2 = 25a2 ⇒ AC = 5a.
Và
· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB) suy ra BC ⊥ (SAB).
Mà SB ⊂ (SBC) nên BC ⊥ SB.
Ta có: AB ⊥ BC, SB ⊥ BC và AB ∩ SB = B ∈ BC.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [A, BC, S], tức là
Xét tam giác SAB vuông tại A có:
SB2 = SA2 + AB2 ⇒ SB2 = (3a)2 + (3a)2 = 18a2
Và
b*) Gọi H và K lần lượt là hình chiếu của A trên SB và SC nên AH ⊥ SB và AK ⊥ SC.
Do BC ⊥ (SAB) (cmt) và AH ⊂ (SAB) nên BC ⊥ AH.
Ta có: AH ⊥ SB, AH ⊥ BC và SB ∩ BC = B trong (SBC) nên AH ⊥ (SBC).
Mà SC ⊂ (SBC) và HK ⊂ (SBC).
Suy ra: AH ⊥ SC và AH ⊥ HK.
Ta có: SC ⊥ AH, SC ⊥ AK (cmt) và AH ∩ AK = A trong (AHK) nên SC ⊥ (AHK).
Mà HK ⊂ (AHK).
Suy ra SC ⊥ HK.
Từ đó ta có: HK ⊥ SC, AK ⊥ SC và HK ∩ AK = K ∈ SC.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [A, SC, B], tức là
Áp dụng hệ thức lượng trong:
· Tam giác SAB vuông tại A với đường cao AH có:
AH. SB = SA. AB
· Tam giác SAC vuông tại A với đường cao AK có:
AK. SC = SA. AC
(Do tam giác SAC vuông tại A nên )
Xét tam giác AHK vuông tại H (vì AH ⊥ HK) có:
Và
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.