Bài 7.2 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

245

Với giải Bài 7.2 trang 30 SGK Toán 11 Kết nối tri thức chi tiết trong Toán 11 (Kết nối tri thức) Bài 22: Hai đường thẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 7.2 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Bài 7.2 trang 30 Toán 11 Tập 2: Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau. Chứng minh rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

Lời giải:

Bài 7.2 trang 30 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên các mặt của hình hộp là hình thoi.

Vì ABB'A' là hình thoi nên AB' ^ A'B.

Có CB // A'D' và CB = A'D' (do cùng song song và bằng AD). Do đó CBA'D' là hình bình hành, suy ra CD' // BA'.

Khi đó (CD', AB') = (BA', AB') = 90°.

Vậy CD' và AB' vuông góc với nhau.

Vì ADD'A' là hình thoi nên AD' ^ A'D.

Có CD // A'B' và CD = A'B' (vì CD, A'B' cùng song song và bằng AB) nên CDA'B' là hình bình hành, suy ra CB' // DA'.

Khi đó (CB', AD') = (DA', AD') = 90°.

Vậy CB' và AD' vuông góc với nhau.

Do ABCD là hình thoi nên AC ^ BD.

Vì BB' // DD' và BB' = DD' (do BB', DD' cùng song song và bằng AA' ) nên BDD'B' là hình bình hành, suy ra BD // B'D'.

Khi đó (AC, B'D') = (AC, BD) = 90°.

Vậy AC và B'D' vuông góc với nhau.

Đánh giá

0

0 đánh giá