Với Giải Bài 34 trang 103 SBT Toán 11 Tập 2 trong Bài 4: Hai mặt phẳng vuông góc Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
Cho hai mặt phẳng (P), (Q) vuông góc và cắt nhau theo giao tuyến d, đường thẳng a song song với (P)
Bài 34 trang 103 SBT Toán 11 Tập 2: Cho hai mặt phẳng (P), (Q) vuông góc và cắt nhau theo giao tuyến d, đường thẳng a song song với (P). Phát biểu nào sau đây đúng?
A. Nếu a ⊥ d thì a ⊥ (Q);
B. Nếu a ⊥ d thì a // (Q);
C. Nếu a ⊥ d thì a // b với mọi b ⊂ (Q);
C. Nếu a ⊥ d thì a // c với mọi c // (Q).
Lời giải:
Đáp án đúng là: A
· Đáp án A đúng: Lấy mặt phẳng (R) bất kì chứa đường thẳng a và cắt (P) theo giao tuyến là đường thẳng a’.
Ta có: a’ = (R) ∩ (P) và a // (P) nên suy ra a // a’.
Nếu a ⊥ d, mà a // a’ nên a’ ⊥ d.
Lại có: (P) ⊥ (Q), d = (P) ∩ (Q), a’ ⊂ (P) và a’ ⊥ d nên suy ra a’ ⊥ (Q).
Mà a // a’ nên a ⊥ (Q).
Vậy nếu a ⊥ d thì a ⊥ (Q).
· Đáp án B sai: Vì nếu a ⊥ d thì a ⊥ (Q).
· Đáp án C sai: Vì nếu a ⊥ d thì a ⊥ (Q) nên suy ra a ⊥ b với mọi b ⊂ (Q).
· Đáp án D sai:
Lấy mặt phẳng (M) bất kì chứa đường thẳng c và cắt (Q) theo giao tuyến là đường thẳng c’.
Ta có: c’ = (M) ∩ (Q) và c // (Q) nên suy ra c // c’.
Nếu a ⊥ d thì a ⊥ (Q) (cmt), mà c’ ⊂ (Q) nên a ⊥ c’.
Ta thấy: a ⊥ c’, c // c’ nên suy ra a ⊥ c với mọi c // (Q).
Xem thêm các bài SBT Toán 11 Cánh Diều hay, chi tiết khác:
Bài 35 trang 103 SBT Toán 11 Tập 2: Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì:
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau
a) (SAB) ⊥ (SBC);
b) (SAD) ⊥ (SCD).
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.