Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A

167

Với Giải Bài 39 trang 104 SBT Toán 11 Tập 2 trong Bài 4: Hai mặt phẳng vuông góc Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A

Bài 39 trang 104 SBT Toán 11 Tập 2Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A. Gọi M là trung điểm của BC. Chứng minh rằng (MAA’) ⊥ (BCC’B’).

Lời giải:

Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC), tam giác ABC cân tại A

Vì tam giác ABC cân tại A, AM là đường trung tuyến nên AM ⊥ BC.

Ta có: AA’ ⊥ (ABC), AA’ // BB’, suy ra BB’ ⊥ (ABC).

Mà AM ⊂ (ABC) nên BB’ ⊥ AM.

Ta có: AM ⊥ BC, AM ⊥ BB’, BC ∩ BB’ = B trong (BCC’B’).

Từ đó suy ra AM ⊥ (BCC’B’).

Mà AM ⊂ (MAA’) nên (MAA’) ⊥ (BCC’B’).

Đánh giá

0

0 đánh giá