Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, AC cắt BD tại O, SO ⊥ (ABCD), SA = 2a

188

Với Giải Bài 49 trang 110 SBT Toán 11 Tập 2 trong Bài 5: Khoảng cách Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, AC cắt BD tại O, SO ⊥ (ABCD), SA = 2a

Bài 49 trang 110 SBT Toán 11 Tập 2Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, AC cắt BD tại O, SO ⊥ (ABCD), SA = 2a. Tính khoảng cách:

a) Từ điểm A đến mặt phẳng (SBD);

b) Giữa hai đường thẳng SO và CD;

c) Từ điểm O đến mặt phẳng (SCD);

d*) Giữa hai đường thẳng AB và SD.

Lời giải:

Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, AC cắt BD tại O, SO ⊥  (ABCD), SA = 2a

a) Ta có: SO ⊥ (ABCD), AO ⊂ (ABCD) nên SO ⊥ AO.

Do ABCD là hình vuông nên AC ⊥ BD hay AO ⊥ BD.

Ta có: AO ⊥ SO, AO ⊥ DB, SO ∩ BD = O trong (SBD)

Suy ra AO ⊥ (ABCD).

Như vây: d(A, (SBD)) = AO.

Ta có: ABCD là hình vuông cạnh a nên AC=a2.

Vì O là giao điểm của hai đường chéo AC và BD trong hình vuông ABCD nên O là trung điểm của AC và BD.

AO=AC2=a22.

Vậy dA,SBD=a22.

b) Gọi M là hình chiếu của O trên CD hay OM ⊥ CD.

Do SO ⊥ (ABCD), OM ⊂ (ABCD) nên SO ⊥ OM.

Từ đó ta thấy OM là đoạn vuông góc chung của hai đường thẳng SO và CD.

Như vậy: d(SO, CD) = OM.

Xét hình vuông ABCD có: OM ⊥ CD, AD ⊥ CD nên OM // AD.

Xét tam giác ACD có: OM // AD, O là trung điểm của AD.

Suy ra OM là đường trung bình của tam giác ACD nên M là trung điểm của CD

OM=AD2=a2.

Vậy dSO,CD=OM=a2.

c) Gọi H là hình chiếu của O trên SM hay OH ⊥ SM.

Do SO ⊥ (ABCD), CD ⊂ (ABCD) nên SO ⊥ CD.

Ta có: CD ⊥ OM, CD ⊥ SO, SO ∩ OM = O trong (SOM)

Suy ra CD ⊥ (SOM).

Mà OH ⊂ (SOM) nên CD ⊥ OH.

Ta có: OH ⊥ SM, OH ⊥ CD, SM ∩ CD = M trong (SCD)

Suy ra OH ⊥ (SCD).

Như vậy: d(O, (SCD)) = OH.

Áp dụng định lí Pythagore trong tam giác SAO vuông tại O có:

SO2 = SA2 – AO2

SO2=2a2a222=7a22.

Áp dụng hệ thức lượng trong tam giác SOM vuông tại O, đường cao OH ta có:

1OH2=1SO2+1OM2=27a2+4a2=307a2

OH=a21030.

Vậy dO,SCD=a21030.

d*) Ta có: AB // CD (do ABCD là hình vuông), CD ⊂ (SCD) nên AB // (SCD).

Do đó d(AB, SD) = d(AB, (SCD)) = d(A, (SCD)).

Gọi K là hình chiếu của A trên (SCD) hay AK ⊥ (SCD).

Khi đó d(A, (SCD)) = AK.

Ta có: H, K lần lượt là hình chiếu của O và A trên (SCD)

Mà C, O, A thẳng hàng nên C, H, K thẳng hàng.

Lại có: OH ⊥ (SCD), AK ⊥ (SCD).

Suy ra OH // AK.

Tam giác ACK có OH // AK, nên theo hệ quả định lí Thalès ta có:

OHAK=OCAC=12 (do O là trung điểm của AC)

AK=2OH=2.a21030=a21015.

Vậy dAB,SD=dA,SCD=AK=a21015.

Đánh giá

0

0 đánh giá