Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông

281

Với Giải Bài 8.7 trang 48 SBT Toán 11 Tập 2 trong Bài 29: Công thức cộng xác suất Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

 Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông

Bài 8.7 trang 48 SBT Toán 11 Tập 2Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:

a) Thích chơi ít nhất một trong hai môn bóng bàn và cầu lông.

b) Thích chơi cầu lông và không thích chơi bóng bàn.

c) Thích chơi bóng bàn và không thích chơi cầu lông.

d) Thích chơi đúng một trong hai môn.

Lời giải:

Gọi A là biến cố: “Người đó thích chơi bóng bàn”;

B là biến cố: “Người đó thích chơi cầu lông”.

Khi đó:

Biến cố A  B: “Người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông”.

Biến cố AB: “Người đó thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B¯ : “Người đó không thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B : “Người đó thích chơi cầu lông và không thích chơi bóng bàn”.

Biến cố AB¯ : “Người đó thích chơi bóng bàn và không thích chơi cầu lông”.

Ta có P(A) = 1940; P(B) = 2040; P(A¯B¯) = 840.

a) Ta cần tính P(A  B).

Biến cố đối của biến cố A  B là biến cố A¯B¯ .

Do đó P(AB) = 1-P(A¯B¯) = 1-840=3240=45.

Vậy xác suất để người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông là 45 .

b) Ta cần tính PA¯B.

Từ công thức cộng xác suất suy ra

P(AB) = P(A) + P(B) – P(A  B) = 1940+20403240=740.

Có B=ABA¯B, suy ra P(B) = P(AB) + P(A¯B) .

Do đó P(A¯B) = P(B)-P(AB) = 2040740=1340.

Vậy xác suất để người đó thích chơi cầu lông và không thích chơi bóng bàn là 1340 .

c) Ta cần tính P(AB¯) .

Có A = ABAB¯, suy ra P(A) = P(AB)+P(AB¯).

Do đó P(AB¯) = P(A)-P(AB) = 1940740=1240=310.

Vậy xác suất để người đó thích chơi bóng bàn và không thích chơi cầu lông là 310 .

d) Gọi E là biến cố: “Người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn”.

Ta có E=AB¯A¯B , suy ra P(E) = PAB¯+PA¯B = 1240+1340=2540=58 .

Vậy xác suất để người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn là 58 .

Đánh giá

0

0 đánh giá