SBT Toán 11 (Kết nối tri thức) Bài 29: Công thức cộng xác suất

267

Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 29: Công thức cộng xác suất sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 29.

SBT Toán 11 (Kết nối tri thức) Bài 29: Công thức cộng xác suất

Bài 8.6 trang 48 SBT Toán 11 Tập 2Trong một căn phòng có 36 người, trong đó có 25 người họ Nguyễn và 11 người họ Trần. Chọn ngẫu nhiên hai người trong phòng đó. Tính xác suất để hai người được chọn có cùng họ.

Lời giải:

Xét các biến cố sau:

A: “Cả hai người được chọn đều họ Nguyễn”;

B: “Cả hai người được chọn đều họ Trần”;

C: “Cả hai người được chọn có cùng họ”.

C là biến cố hợp của A và B.

Do A và B xung khắc nên P(C) = P(A  B) = P(A) + P(B).

Ta có nΩ=C362=630 ; n(A) = C252=300 ; n(B) = C112= 55.

Do đó P(A) = 300630; P(B) = 55630.

Suy ra P(C) = P(A) + P(B) = 300630+55630=355630=71126 .

Vậy xác suất để hai người được chọn có cùng họ là 71126.

Bài 8.7 trang 48 SBT Toán 11 Tập 2Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:

a) Thích chơi ít nhất một trong hai môn bóng bàn và cầu lông.

b) Thích chơi cầu lông và không thích chơi bóng bàn.

c) Thích chơi bóng bàn và không thích chơi cầu lông.

d) Thích chơi đúng một trong hai môn.

Lời giải:

Gọi A là biến cố: “Người đó thích chơi bóng bàn”;

B là biến cố: “Người đó thích chơi cầu lông”.

Khi đó:

Biến cố A  B: “Người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông”.

Biến cố AB: “Người đó thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B¯ : “Người đó không thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B : “Người đó thích chơi cầu lông và không thích chơi bóng bàn”.

Biến cố AB¯ : “Người đó thích chơi bóng bàn và không thích chơi cầu lông”.

Ta có P(A) = 1940; P(B) = 2040; P(A¯B¯) = 840.

a) Ta cần tính P(A  B).

Biến cố đối của biến cố A  B là biến cố A¯B¯ .

Do đó P(AB) = 1-P(A¯B¯) = 1-840=3240=45.

Vậy xác suất để người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông là 45 .

b) Ta cần tính PA¯B.

Từ công thức cộng xác suất suy ra

P(AB) = P(A) + P(B) – P(A  B) = 1940+20403240=740.

Có B=ABA¯B, suy ra P(B) = P(AB) + P(A¯B) .

Do đó P(A¯B) = P(B)-P(AB) = 2040740=1340.

Vậy xác suất để người đó thích chơi cầu lông và không thích chơi bóng bàn là 1340 .

c) Ta cần tính P(AB¯) .

Có A = ABAB¯, suy ra P(A) = P(AB)+P(AB¯).

Do đó P(AB¯) = P(A)-P(AB) = 1940740=1240=310.

Vậy xác suất để người đó thích chơi bóng bàn và không thích chơi cầu lông là 310 .

d) Gọi E là biến cố: “Người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn”.

Ta có E=AB¯A¯B , suy ra P(E) = PAB¯+PA¯B = 1240+1340=2540=58 .

Vậy xác suất để người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn là 58 .

Bài 8.8 trang 49 SBT Toán 11 Tập 2Một nhóm có 50 người được phỏng vấn họ đã mua cành đào hay cây quất vào dịp tết vừa qua, trong đó 31 người mua cành đào, 12 người mua cây quất và 5 người mua cả cành đào và cây quất. Chọn ngẫu nhiên một người. Tính xác suất để người đó:

a) Mua cành đào hoặc cây quất.

b) Mua cành đào và không mua cây quất.

c) Không mua cành đào và không mua cây quất.

d) Mua cây quất và không mua cành đào.

Lời giải:

Gọi A là biến cố: “Người đó mua cành đào”, B là biến cố: “Người đó mua cây quất”.

Biến cố A  B: “Người đó mua cành đào hoặc cây quất”.

Biến cố AB: “Người đó mua cả cành đào và cây quất”.

Biến cố AB¯ : “Người đó mua cành đào và không mua cây quất”.

Biến cố A¯B¯ : “Người đó không mua cành đào và không mua cây quất”.

Biến cố A¯B : “Người đó mua cây quất và không mua cành đào”.

Ta có: P(A) = 3150 ; P(B) = 1250; P(AB) = 550.

a) Ta cần tính P(A  B).

Có P(A  B) = P(A) + P(B) – P(AB) = 3150+1250550=3850=1925 .

Vậy xác suất để người đó mua cành đào hoặc cây quất là 1925 .

b) Ta cần tính P(AB¯) .

Có A = ABAB¯, suy ra P(A) = P(AB)+P(AB¯) .

Do đó P(AB¯) = P(A) - P(AB) = 3150550=2650=1325 .

Vậy xác suất để người đó mua cành đào và không mua cây quất là 1325 .

c) Ta cần tính P(A¯B¯) .

Ta có biến cố đối của AB¯ là biến cố A  B.

Do đó P(A¯B¯) = 1-P(AB) = 1-1925=625.

Vậy xác suất để người đó không mua cành đào và không mua cây quất là 625.

d) Ta cần tính P(A¯B) .

Ta có B = ABA¯B, suy ra P(B) = P(AB) + P(A¯B) .

Do đó P(A¯B) = P(B) - P(AB) = 1250550=750.

Vậy xác suất để người đó mua cây quất và không mua cành đào là 750 .

Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 8.6 trang 48 SBT Toán 11 Tập 2Trong một căn phòng có 36 người, trong đó có 25 người họ Nguyễn và 11 người họ Trần. Chọn ngẫu nhiên hai người trong phòng đó. Tính xác suất để hai người được chọn có cùng họ.

Bài 8.7 trang 48 SBT Toán 11 Tập 2Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:

Bài 8.8 trang 49 SBT Toán 11 Tập 2Một nhóm có 50 người được phỏng vấn họ đã mua cành đào hay cây quất vào dịp tết vừa qua, trong đó 31 người mua cành đào, 12 người mua cây quất và 5 người mua cả cành đào và cây quất. Chọn ngẫu nhiên một người. Tính xác suất để người đó:

Đánh giá

0

0 đánh giá