Bài 2 trang 106 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

113

Với giải Bài 2 trang 106 SGK Toán 11 Cánh diều chi tiết trong Toán 11 (Cánh diều) Bài 5: Khoảng cách giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 2 trang 106 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Bài 2 trang 106 Toán 11 Tập 2:Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, ABC^=ABD^=BCD^=90°. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).

a) Tính khoảng cách từ điểm C đến đường thẳng AB.

b) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

c) Tính khoảng cách giữa hai đường thẳng AB và CD.

Bài 2 trang 106 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

a) Vì ABC^=90° nên CB ⊥ AB.

Suy ra d(C, AB) = CB = b.

Vậy khoảng cách từ điểm C đến đường thẳng AB bằng b.

b) Vì ABD^=90° nên AB ⊥ BD.

Ta có: AB ⊥ CB, AB ⊥ BD và CB ∩ BD = B trong (BCD).

Suy ra AB ⊥ (BCD).

Mà CD ⊂ (BCD) nên AB ⊥ CD.

Vì BCD^=90° nên CD ⊥ BC.

Ta có: CD ⊥ AB, CD ⊥ BC và AB ∩ BC = B trong (ABC).

Suy ra CD ⊥ (ABC).

Khi đó d(D, (ABC)) = CD.

Áp dụng định lí Pythagore vào tam giác BCD vuông tại C có:

BD2 = BC2 + CD2

Suy ra CD=BD2BC2=c2b2.

Do đó dD,ABC=CD=c2b2.

Vậy khoảng cách từ điểm D đến mặt phẳng (ABC) bằng c2b2.

c) Ta có: BC ⊥ AB (theo câu a) và BC ⊥ CD (theo câu b).

Suy ra đoạn thẳng BC là đoạn vuông góc chung của hai đường thẳng AB và CD.

Do đó d(AB, CD) = BC = b.

Vậy khoảng cách giữa hai đường thẳng AB và CD bằng b.

Đánh giá

0

0 đánh giá