Với giải Bài 30 trang 67 SBT Toán 8 Tập 2 Cánh diều chi tiết trong Bài 5: Tam giác đồng dạng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Cho hình vuông ABCD cạnh bằng a. Lấy điểm E thuộc cạnh BC, điểm F thuộc cạnh AD sao cho CE = AF
Bài 30 trang 67 SBT Toán 8 Tập 2: Cho hình vuông ABCD cạnh bằng a. Lấy điểm E thuộc cạnh BC, điểm F thuộc cạnh AD sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng DC lần lượt tại M và N. Các đường thẳng NA, MB cắt nhau tại K.
a) Chứng minh: ∆KAB ᔕ ∆KNM; ∆CEM ᔕ ∆DAM; ∆NFD ᔕ ∆NBC.
b) So sánh CM.DN và AB2.
c) Các điểm E, F lấy ở vị trí nào trên các cạnh BC, AD thì MN có độ dài nhỏ nhất?
Lời giải:
a) Do ABCD là hình vuông nên AB // CD, AD // BC.
M, N ∈ CD nên AB // MN.
E ∈ BC, F ∈ AD nên CE // AD, DF // BC.
• Vì AB // MN nên ∆KAB ᔕ ∆KNM;
• Vì CE // AD nên ∆CEM ᔕ ∆DAM;
• Vì DF // BC nên ∆NFD ᔕ ∆NBC.
b) Vì AB // CM nên ∆CEM ᔕ ∆BEA, do đó (1).
Vì AB // ND nên ∆NDF ᔕ ∆BAF, do đó hay (2).
Từ (1), (2) và CE = AF, BE = DF, ta có
Hay nên CM.DN = AB2.
c) Ta có (CM ‒ DN)2 ≥ 0
Suy ra (CM2 + 2.CM.DN + DN2 ‒ 4.CM.DN) ≥ 0
Do đó (CM + DN)2 ≥ 4CM.DN.
Hay
Do đó MN = MC + CD + DN ≥ 3AB (vì AB = CD)
Dấu "=" xảy ra khi CM = DN = AB = a.
Khi đó, nên E là trung điểm của BC. Tương tự, lúc này F là trung điểm của AD.
Vậy MN có độ dài nhỏ nhất bằng 3AB khi E, F lần lượt là trung điểm của BC và AD.
Xem thêm lời giải SBT Toán lớp 8 bộ sách Cánh diều hay, chi tiết khác:
Bài 26 trang 67 SBT Toán 8 Tập 2: Tìm khẳng định sai: a) Nếu ∆A’B’C’ ᔕ ∆ABC thì ∆ABC ᔕ ∆A’B’C’.
Bài 28 trang 67 SBT Toán 8 Tập 2: Quan sát Hình 28 biết
Xem thêm lời giải SBT Toán lớp 8 bộ sách Cánh diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.