Cho tam giác ABC vuông tại A và MN // BC (M ∈ AB; N ∈ AC). Cho biết AB

222

Với giải Bài 8 trang 42 SBT Toán 8 Chân trời sáng tạo chi tiết trong Bài 1: Định lí Thalès trong tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác ABC vuông tại A và MN // BC (M ∈ AB; N ∈ AC). Cho biết AB

Bài 8 trang 42 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A và MN // BC (M ∈ AB; N ∈ AC). Cho biết AB = 9 cm, AM = 3 cm, AN = 4 cm. Tính độ dài NC, MN, BC.

Lời giải:

Cho tam giác ABC vuông tại A và MN // BC (M thuộc AB; N thuộc AC)

Ta có BM = AB – AM = 9 – 3 = 6 (cm)

Xét ∆ABC có MN // BC nên theo định lí Thalès, ta có AMBM=ANNC.

Suy ra NC = AN.BMAM=4.63 = 8 (cm)

Xét ∆AMN vuông tại A, áp dụng định lý Pythagore, ta có:

MN2 = AM2 + AN2 = 32 + 42 = 25.

Do đó MN = 5 cm.

Xét ∆ABC có MN // BC, theo hệ quả của định lí Thalès, ta có MNBC=AMAB.

Suy ra BC = MN.ABAM=5.93= 15 (cm).

Vậy NC = 8 cm, MN = 5 cm, BC = 15 cm.

Đánh giá

0

0 đánh giá