Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của

203

Với giải Bài 2 trang 45 SBT Toán 8 Chân trời sáng tạo chi tiết trong Bài 2: Đường trung bình của tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của

Bài 2 trang 45 SBT Toán 8 Tập 2: Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:

a) EF = FB;

b) AE = 13AB;

c) CE = 4EI.

Lời giải:

Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM

a) Xét ∆BCE, ta có MB = MC và MF // CE nên EF = FB.

b) Xét ∆AMF, ta có IA = IM và EI // MF (vì I ∈ CE) nên EA = EF.

Suy ra EA = EF = FB mà EA + EF + FB = AB.

Vậy AE = 13AB.

c) Xét ∆BCE, ta có MB = MC và EF = FB, nên MF là đường trung bình của ∆BCE.

Suy ra CE = 2MF (1)

Tương tự, có EI là là đường trung bình của ∆AMF, suy ra MF = 2EI (2)

Từ (1) và (2) suy ra CE = 4EI.

Đánh giá

0

0 đánh giá