Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

182

Toptailieu.vn xin giới thiệu Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Hàm số mũ. Hàm số lôgarit

1. Hàm số mũ

- Hàm số y=ax(a>0,a1) được gọi là hàm số mũ cơ số a.

- Hàm số y=ax(a>0,a1) có:

+ Tập xác định: D=R.

+ Tập giá trị: T=(0;+).

+ Hàm số liên tục trên R.

+ Sự biến thiên:

  • Nếu a > 1 thì hàm số đồng biến trên R và limx+y=+;limxy=0.
  • Nếu 0 < a < 1 thì hàm số nghịch biến trên R và limx+y=0;limxy=+.

+ Đồ thị:

  • Cắt trục tung tại điểm (0; 1), đi qua điểm (1; a).
  • Nằm phía trên trục hoành.

Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

2. Hàm số lôgarit

- Hàm số y=logax(a>0;a1) được gọi là hàm số lôgarit cơ số a.

- Hàm số y=logax(a>0;a1) có:

+ Tập xác định: D=(0;+).

+ Tập giá trị: T=R.

+ Hàm số liên tục trên (0;+).

+ Sự biến thiên:

  • Nếu a > 1 thì hàm số đồng biến trên (0;+) và limx+y=+;limx0+y=0.
  • Nếu 0 < a < 1 thì hàm số nghịch biến trên (0;+) và limx+y=;limx0+y=+.

+ Đồ thị:

  • Cắt trục hoành tại điểm (1; 0), đi qua điểm (a; 1).
  • Nằm phía phải trục tung.

Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Sơ đồ tư duy Hàm số mũ. Hàm số lôgarit

Lý thuyết Hàm số mũ. Hàm số lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)

B. Bài tập Hàm số mũ. Hàm số lôgarit

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:

Đánh giá

0

0 đánh giá