Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

251

Toptailieu.vn xin giới thiệu Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Phương trình, bất phương trình mũ và lôgarit

1. Phương trình mũ

Phương trình mũ cơ bản có dạng ax=b(với 0<a1).

- Nếu b > 0 thì phương trình có nghiệm duy nhất x=logab.

- Nếu b  0 thì phương trình vô nghiệm.

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

Chú ý: Phương pháp giải phương trình mũ bằng cách đưa về cùng cơ số:

Nếu 0<a1 thì au=avu=v.

2. Phương trình lôgarit

Phương trình lôgarit cơ bản có dạng logax=b(0<a1).

Phương trình lôgarit cơ bản logax=b có nghiệm duy nhất x=ab.

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Chú ý: Phương pháp giải phương trình lôgarit bằng cách đưa về cùng cơ số:

Nếu u,v>0 và 0<a1 thì logau=logavu=v.

3. Bất phương trình mũ

Bất phương trình mũ cơ bản có dạng ax>b (hoặc axb,ax<b,axb) với a>0,a1.

Xét bất phương trình dạng ax>b:

- Nếu b0 thì tập nghiệm của bất phương trình là R.

- Nếu b > 0 thì bất phương trình tương đương với ax>alogab.

Với a > 1, nghiệm của bất phương trình là x>logab.

Với 0<a<1, nghiệm của bất phương trình là x<logab.

Chú ý:

a) Các bất phương trình mũ cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì au=avu>v.

Nếu 0 < a < 1 thì au>avu<v.

4. Bất phương trình lôgarit

Bất phương trình lôgarit cơ bản có dạng logax>b(hoặc logaxb,logax<b,logaxb) với a>0,a1.

Xét bất phương trình dạng logax>b:

- Nếu a > 1 thì nghiệm của bất phương trình là x>ab.

- Nếu 0 < a < 1 thì nghiệm của bất phương trình là 0<x<ab.

Chú ý:

a) Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.

b) Nếu a > 1 thì logau>logavu>v>0.

Nếu 0 < a < 1 thì logau>logav0<u<v.

Sơ đồ tư duy Phương trình, bất phương trình mũ và lôgarit

Lý thuyết Phương trình, bất phương trình mũ và lôgarit – Toán 11 Kết nối tri thức (ảnh 1)

B. Bài tập Phương trình, bất phương trình mũ và lôgarit

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 20: Hàm số mũ và hàm số lôgarit

Lý thuyết Bài 22: Hai đường thẳng vuông góc

Lý thuyết Bài 23: Đường thẳng vuông góc với mặt phẳng

Lý thuyết Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Lý thuyết Bài 25: Hai mặt phẳng vuông góc

Đánh giá

0

0 đánh giá