Lý thuyết Lũy thừa với số mũ thực (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

262

Toptailieu.vn xin giới thiệu Lý thuyết Lũy thừa với số mũ thực (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Lũy thừa với số mũ thực (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Lũy thừa với số mũ thực

1. Lũy thừa với số mũ nguyên

a) Định nghĩa

- Cho n là một số nguyên dương. Ta định nghĩa:

Với a là số thực tùy ý:

an=a.a.a...anthas

Với a là số thực khác 0:

a0=1;an=1an.

- Trong biểu thức am, a gọi là cơ số, m gọi là số mũ.

Chú ý: 00 và 0n(nN) không có nghĩa.

b) Tính chất

Với a0,b0 và m, n là các số nguyên, ta có:

am.an=am+n;aman=amn;(am)n=amn;(ab)m=am.bm;(ab)m=ambm.

Chú ý:

- Nếu a>1 thì am>an khi và chỉ khi m > n.

- Nếu 0<a<1 thì am>an khi và chỉ khi m < n.

2. Lũy thừa với số mũ hữu tỉ

a) Khái niệm căn bậc n

Cho số thực a và số nguyên dương n. Số b được gọi là căn bậc n của số a nếu bn=a.

Nhận xét: Khi n là số lẻ, mỗi số thực a chỉ có một căn bậc n và kí hiệu là an (gọi là căn số học bậc n của a), giá trị âm kí hiệu là an.

Chú ý: 0n=0(nN).

b) Tính chất của căn bậc n

Giả sử n, k là các số nguyên dương, m là số nguyên. Khi đó:

an.bn=abn

anbn=abn

(an)m=amn

akn=ank

(Giả thiết các biểu thức ở trên đều có nghĩa).

c) Nhận biết lũy thừa với số mũ hữu tỉ

Cho số thực a và số hữu tỉ r=mn, trong đó m là một số nguyên và n là một số nguyên dương. Lũy thừa của a với số mũ r, kí hiệu là ar, xác định bởi ar=amn=amn.

Lưu ý: (an)n=a.

Chú ý: Lũy thừa với số mũ hữu tỉ (của một số thực dương) có đầy đủ tính chất như lũy thừa với số mũ nguyên đã nêu trong Mục 1.

3. Lũy thừa với số mũ thực

Cho a là số thực dương và α là một số vô tỉ. Xét dãy số hữu tỉ (rn) mà limn+rn=α. Khi đó, dãy số (arn) có giới hạn xác định và không phụ thuộc vào dãy số hữu tỉ (rn) đã chọn. Giới hạn đó gọi là lũy thừa của a với số mũ αkí hiệu là aα.

aα=limn+arn.

Chú ý: Lũy thừa với số mũ thực (của một số thực dương) có đầy đủ tính chất như lũy thừa với số mũ nguyên đã nêu trong Mục 1.

B. Bài tập Lũy thừa với số mũ thực

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 17: Hàm số liên tục

Lý thuyết Bài 19: Lôgarit

Lý thuyết Bài 20: Hàm số mũ và hàm số lôgarit

Lý thuyết Bài 21: Phương trình, bất phương trình mũ và lôgarit

Lý thuyết Bài 22: Hai đường thẳng vuông góc

Đánh giá

0

0 đánh giá