Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

190

Toptailieu.vn xin giới thiệu Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit (Cánh diều) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit

1. Phương trình mũ

Phương trình mũ cơ bản ẩn x có dạng ax=b(a>0,a1).

- Nếu b0 thì phương trình vô nghiệm.

- Nếu b>0 thì phương trình có nghiệm duy nhất x=logab.

Với a>0,a1 thì

  • af(x)=bf(x)=logab với b >0;
  • af(x)=ag(x)f(x)=g(x).

2. Phương trình lôgarit

Phương trình lôgarit cơ bản ẩn x có dạng logax=b(a>0,a1). Phương trình có nghiệm duy nhất x=ab.

Với a>0,a1 thì

  • logaf(x)=bf(x)=ab.
  • logaf(x)=logag(x){f(x)=g(x)[f(x)>0g(x)>0

3. Bất phương trình mũ

Xét bất phương trình mũ ax>b(a>0,a1).

- Nếu b0, tập nghiệm của bất phương trình là R;

- Nếu b > 0, a > 1 thì nghiệm của bất phương trình là x>logab;

- Nếu b > 0, 0 < a < 1 thì nghiệm của bất phương trình là x<logab.

Các bất phương trình mũ cơ bản khác được giải tương tự.

4. Bất phương trình lôgarit

Xét bất phương trình lôgarit logax>b(a>0,a1).

- Nếu a > 1 thì nghiệm của bất phương trình là x>ab.

- Nếu 0 < a < 1 thì nghiệm của bất phương trình là 0 < x < ab.

Các bất phương trình lôgarit cơ bản khác được giải tương tự.

Sơ đồ tư duy Phương trình mũ, bất phương trình mũ và lôgarit

Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

B. Bài tập Phương trình mũ, bất phương trình mũ và lôgarit

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán 11 sách Cánh diều hay, chi tiết khác:

Lý thuyết Bài 3: Hàm số mũ. Hàm số lôgarit

Lý thuyết Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Lý thuyết Bài 2: Các quy tắc tính đạo hàm

Lý thuyết Bài 3: Đạo hàm cấp hai

Lý thuyết Bài 1: Hai đường thẳng vuông góc

 

Đánh giá

0

0 đánh giá